Математические задачи с физическим смыслом в школьном курсе математики
Журнал: Научный журнал «Студенческий форум» выпуск №25(161)
Рубрика: Физико-математические науки
Научный журнал «Студенческий форум» выпуск №25(161)
Математические задачи с физическим смыслом в школьном курсе математики
Роль задач в математике огромна. Понимать математику — это значит уметь решать задачи, уметь применять теоретические знания к практическим ситуациям. Именно решение математических задач с физическим смыслом позволяет глубоко усвоить материал, развить логическое мышление, творческую фантазию и лучше понимать явления природы. Очень важно в этом случае правильно и оптимально применять математические знания и приёмы. Часто сопоставить и связать отдельные темы таких предметов как физика и математика представляет для учеников проблему. На уроках математики решается целый ряд вопросов, тесно переплетающихся с законами, описывающими физические явления.
В теории и методике обучения математике вопросам методики обучения учащихся теме «Решение математических задач с физическим смыслом» в курсе математике основной школы посвящены исследования С.Н. Сухинин, А.М. Цатурян, Н.А. Пряткин, В.В. Волошина, А. В. Абрамов, Н. В Абрамова., М. Н. Зайнуллин и др [2].
На уроках математики решается целый ряд вопросов, тесно переплетающихся с законами, описывающими физические явления. Например, такие математические понятия как функция, график функции, область определения функции и так далее учащиеся не всегда могут применять к физическим задачам. Успешно решать математические задачи с физическим смыслом без использования математических знаний и умений невозможно. Большинство задач требует вычисления, составления и решения уравнений, анализа функциональных зависимостей, построения и чтения графиков и так далее.
Основные подходы к решению задач с физическим смыслом можно разделить на 4 этапа: осмысление условия задачи (анализ условия), поиск и составление плана решения, осуществление плана решения, изучение (исследование) найденного решения [1].
В методике преподавания математике выделены различные формы самоконтроля, проводимые после завершения этапа реализации намеченного плана [3]. Вот примеры таких форм:
1. Проверка совпадения размерности ответа с требованием задачи. Например, при нахождении пути значение скорости (км/ч) умножается на значение времени (ч). Умножение наименований должно дать наименование длины (км).
2. Проверка ответа по здравому смыслу. Например, скорость пешехода не может быть равной 15 км/ч, количество рабочих не может быть дробным и т.д.
3. Проверка с помощью грубой прикидки. При этом данные грубо округляются, и выясняется порядок возможного результата.
На свете пока не существует универсального метода для решения всех математических задач с физическим смыслом, но существуют приемы, которыми можно воспользоваться в многих задачах. Учитель должен предусмотреть в методике обучения решению задач такие ступени [3]:
1)подготовительную работу к решению задач;
2)ознакомление с решением задач;
3)закрепление умения решать задачи.
Для решения задачи с физическим смыслом надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.
Методика работы с каждым новым видом задач, согласно данному приему, ведется также в соответствии с тремя ступенями: подготовительная, ознакомительная, закрепление [3].
Таким образом, готовность школьников к знакомству с текстовой задачей предполагает сформированность умений:
- умения описывать предметные ситуации и переводить их на язык схем и математических символов;
- определять какие характеристики материального объекта изменились в результате взаимодействия;
- объяснять причину изменений состояния данного объекта;
- выражать каждый член уравнения через физические величины, характеризующие состояния объекта и условия взаимодействия;
- выделять искомую физическую величину;
- выражать искомую физическую величину через другие известные;
- умения переводить текстовые ситуации в предметные и схематические модели и обратно и др.