

РАСЧЁТ ПАРАМЕТРОВ АСИНХРОННОГО ТРЕХФАЗНОГО ДВИГАТЕЛЯ ПЕРЕМЕННОГО ТОКА

Лобода Петр Петрович

студент Улан-Удэнского колледжа железнодорожного транспорта, РФ, Республика Бурятия. г. Улан-Удэ

Коротов Виталий Владимирович

студент Улан-Удэнского колледжа железнодорожного транспорта, РФ, Республика Бурятия. г. Улан-Удэ

Павлова Светлана Валерьевна

научный руководитель, Улан-Удэнского колледжа железнодорожного транспорта, РФ, Республика Бурятия. г. Улан-Удэ

Цель работы: Расчет параметров трехфазного асинхронного двигателя переменного тока марки AUP56A4

Двигатель - Это электромеханическая машина для преобразования электрической энергии в механическую

Асинхро́нный электродвигатель — электрический двигатель переменного тока, частота вращения ротора которого не равна частоте вращения магнитного поля, создаваемого током обмотки статора.

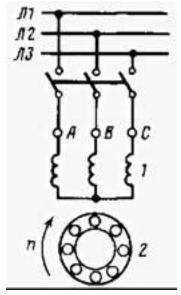


Рисунок. Схема

Основные величины (переменные) в расчетах параметров асинхронного двигателя переменного ток.

Р_н - Номинальная мощность(Вт)

U_н - Номинальная напряженность(В)

і_н - Номинальный переменный ток(А)

Номинальное скольжение:

 $S_{H} = (n_1 - n_2)100\%/n_1$

 $\cos \phi_{\text{H}}$ – Коэффициент мощности (при номинальной работе (0,7 – 0,9), при холостом ходе (0,2 – 0,3))

 $\eta_{\scriptscriptstyle H}$ - Номинальный коэффициент полезного действия (КПД)

$$IH = \frac{PH}{\sqrt{3} * UH * \cos \phi * \eta}$$

 ${\rm n_1}$ - Синхронная частота (Обозначает количество оборотов которое ротор делает вокруг своей оси за минуту)

р - количество пар полюсов

f - частота тока

$$n_1 = \frac{60f}{p}$$

ΔР - Мощность потерь

 P_{Π} - Мощность полезности

 $P_{\Pi}=U*I$

P=E*I

 $P = \Delta P + P_{\Pi}$

 $\eta = U/E*100\% = P/P_{\Pi}*100\%$

КПД асинхронного двигателя зависит от нагрузки. При наменальном режиме работы КПД η =0,9 (0,95)

Вращающий момент синхронного двигателя в номинальном режиме

$$M_H = 9.55 * P_{2H}/n_{2H}$$

Практическая часть:

Дано Решение:

U=380 B 1)мощность, потребляемая двигателем из сети:

2p=4 -активная $P_{1H}=P_{2H}/\eta=1200/0,9=13333Bt=13,33кBt$

 $n_{2\text{H}} = 1460$ об/мин -полная $S = P_{1\text{H}}/\cos\phi_{\text{H}} = 13333/0,85 = 15686$ ВА=15,7 кВт

 P_{2H} =12 кВт 2)Номинальный ток двигателя:

$$\eta = 0.9$$
 $I_{H} = P_{1H} / (\sqrt{3}_{U*\cos\varphi_H*} \eta) = 13333 / (\sqrt{3}_{*380*0,85}) = 23.9A$

 $\cos \phi_{\rm H} = 0.85$ 3)мощность потерь в двигателе:

 $\Delta P = P_{1H} - P_{2H} = 13333 - 12000 = 1333BT = 1,33KBT$

4) частота вращения магнитного поля статора:

 n_1 =60 f/P=60*50/2=1500 об/мин

5)номинальное скольжение:

 $S_{H} = (n_1 - n_2)100\%/n_1 = (1500 - 1460)*100/1500 = 2,67\%$

6)вращающий момент двигателя:

$$M_H = 9.55 * P_{2H}/n_{2H} = 9.55*12*10^3/1460 = 78.64 \text{ M}.$$

Заключение: Мы провели работу над расчетом параметров трехфазного асинхронного двигателя переменного тока мощностью 12кВт под маркой АИР56А4