

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ЛИНЕЙНОЙ КРАЕВОЙ ЗАДАЧИ ДЛЯ СЧЁТНЫХ СИСТЕМ ОДУ

Газдиева Мадина Алиевна

студент Ингушский государственный университет, РФ, г. Магас

Танкиев Исмаил Аюпович

научный руководитель, канд. физ.-мат. наук, заведующий кафедрой математического анализа, профессор Ингушский государственный университет, РФ, г. Магас

UNIQUENESS OF THE SOLUTION OF A LINEAR BOUNDARY VALUE PROBLEM FOR COUNTING SYSTEMS OF ODE

Madina Gazdieva

Student Ingush State University, Russia, Magas

Ismail Tankiev

Scientific adviser, Candidate of physical and mathematical sciences, Head of the Department of Mathematical Analysis, Professor, Ingush State University, Russia, Magas

Аннотация. В данной статье рассматривается линейная краевая задача для счётных систем обыкновенных дифференциальных уравнений, а также доказывается единственность её решения.

Abstract. This article considers a linear boundary value problem for countable systems of ordinary differential equations, and also proves the uniqueness of its solution.

Ключевые слова: линейная краевая задача, интегральные уравнения, счётные системы ОДУ, единственность решения.

Keywords: linear boundary value problem, integral equations, counting systems of ODE, uniqueness of a solution.

Рассматривается счетная система обыкновенных дифференциальных уравнений

$$\frac{dy_i}{dx} = f_i(x, y_1, ..., y_i, ...) \qquad (i = 1, 2, ...)$$
 (1)

$$y_i(a) + \sum_{j=1}^{\infty} \alpha_{ij} y_j(x_j) = 0$$
 ($i = 1, 2, ...$) (2)

 $\mathbf{x_j} \in [a,b]$ (j=1,2,...), а $\mathbf{\alpha_{ij}}$ - некоторые действительные числа, такие что

$$\sum_{i,j=1}^{\infty} \left| \alpha_{ij} \right| < \infty \tag{3}$$

Главный определитель этой системы

$$\Delta = \begin{vmatrix} 1 + \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} & \dots \\ \alpha_{21} & 1 + \alpha_{22} & \dots & \alpha_{2n} & \dots \\ \vdots & \vdots & \dots & \vdots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \dots & 1 + \alpha_{nn} & \dots \end{vmatrix} \neq 0, \tag{4}$$

$$A_{sj}$$
 — алгебраические дополнения s – го элемента j - го столбца Λ .

Причем

$$\sum_{j=1}^{\infty} \alpha_{ij} A_{sj} < \infty, \qquad \sum_{s=1}^{\infty} |\epsilon_{is}| M_{s} < \infty \ (i = 1, 2, ...)$$
 (5)

Теорема: Пусть для задачи (1), (2) выполнены условия (3), (4), (5) и кроме того

1.
$$\sum_{i,s=1}^{\infty} |\varepsilon_{is}| K_s < \infty, \qquad \sum_{i=1}^{\infty} |\varepsilon_{is}| < \infty \quad (s = 1, 2, ...).$$

$$\alpha = \sum_{i=1}^{\infty} D_i < 1,$$

где

$$D_i = \sum_{s=1}^{\infty} |\varepsilon_{is}| K_s + K_i \ (i = 1, 2, ...).$$

Тогда в области G, где

$$B_i + \frac{ND_i}{1 \varpi \alpha} \le p_i \quad (i = 1, 2, \dots)$$

$$B_i = \sum_{s=1}^{\infty} |\varepsilon_{is}| M_s + M_i \quad (i = 1, 2, \dots), \qquad N = \sum_{i=1}^{\infty} B_i,$$

задача (1), (2) имеет по крайней мере одно непрерывное решение

$$y(x) = (y_1(x), ..., y_i(x), ...).$$

Если же при этом

$$\sum_{i=1}^{\infty} |y_i(x)| < B,$$

то решение будет единственным.

Доказательство: Пусть существуют два решения $ar{y}(x)$ и $ar{ar{y}}(x)$ для

$$y_i(x) = \sum_{s=1}^{\infty} \varepsilon_{is} \int_{a}^{x_s} f_s(\tau, y_1(\tau), ..., y_i(\tau), ...) d\tau +$$

$$+ \int_{a}^{x} f_{i}(\tau, y_{1}(\tau), ..., y_{i}(\tau), ...) d\tau \qquad (i = 1, 2, ...)$$
 (4)

Оценивая их разность, получим:

$$\begin{split} |\bar{y}_{i}(x) - \bar{\bar{y}}_{i}(x)| &\leq \sum_{s=1}^{\infty} |\varepsilon_{is}| \left| \int_{a}^{x} f_{s}(\tau, \bar{y}(\tau)) - f_{s}(\tau, \bar{\bar{y}}(\tau)) \right| d\tau + \\ &+ \left| \int_{a}^{x_{i}} f_{i}(\tau, \bar{y}(\tau)) - f_{i}(\tau, \bar{\bar{y}}(\tau)) \right| d\tau \leq \\ &\leq \sum_{s=1}^{\infty} |\varepsilon_{is}| \left| \int_{a}^{x_{s}} K_{s}(\tau) \sum_{k=1}^{\infty} |\overline{y}_{k}(\tau) - \overline{y}_{k}(\tau)| d\tau \right| + \\ &+ \left| \int_{a}^{x_{i}} K_{i}(\tau) \sum_{k=1}^{\infty} |\bar{y}_{k}(\tau) - \bar{\bar{y}}_{k}(\tau)| d\tau \right| \qquad (i = 1, 2, \dots). \end{split}$$

Отсюда

$$\begin{split} \sup_{a \leq x \leq b} \{|\bar{y}_i(x) - \overline{\bar{y}_i}(x)|\} &\leq \left\{ \sum_{s=1}^{\infty} |\mathcal{E}_{is}| \sup_{a \leq x \leq b} \left| \int_{a}^{x_s} K_s(\tau) d\tau \right| + \right. \\ &+ \sup_{a \leq x \leq b} \left| \int_{a}^{x_i} K_i(\tau) d\tau \right| \right\} \sum_{k=1}^{\infty} \sup_{a \leq x \leq b} |\bar{y}_k(x) - \overline{\bar{y}}_k(x)| \leq \\ &\leq \left\{ \sum_{s=1}^{\infty} |\mathcal{E}_{is}| K_s + K_i \right\} \sum_{k=1}^{\infty} \sup_{a \leq x \leq b} |\bar{y}_k(x) - \overline{\bar{y}}_k(x)|. \ (i = 1, 2, \dots) \end{split}$$

Суммируя левые и правые части по і, имеем:

$$\sum_{i=1}^{\infty}\sup_{a\leq x\leq b}|\bar{y}_i(x)-\bar{\bar{y}}_i(x)|\leq \sum_{i=1}^{\infty}D_i\sum_{k=1}^{\infty}\sup_{a\leq x\leq b}|\bar{y}_k(x)-\bar{\bar{y}}_k(x)|$$

ИЛИ

$$\sum_{i=1}^{\infty} \sup_{\alpha \leq x \leq b} |\bar{y}_i(x) - \bar{\bar{y}}_i(x)| \leq \alpha \sum_{k=1}^{\infty} \sup_{\alpha \leq x \leq b} |\bar{y}_k(x) - \bar{\bar{y}}_k(x)|,$$

что противоречит условию 2) теоремы. Поэтому $\bar{y}(x) \equiv \bar{\bar{y}}(x)$. Но (4) эквивалентно

задаче (1), (2), то существование и единственность решения исходной задачи доказано [1-3].

Список литературы:

- 1. Клоков Ю. А. Об одной краевой задаче для обыкновенных дифференциальных уравнений. Т. 18. № 5. С. 226, 227. «URSS» 2016 г.
- 2. Исраилов С. В., Танкиев И. А. Линейные краевые задачи для бесконечных систем обыкновенных дифференциальных уравнений. Грозный. Деп. в ВИНИТИ № 811 76.
- 3. Кигурадзе И. Т., Пужа Б. О некоторых краевых задачах для систем обыкновенных дифференциальных уравнений. Т. 12. № 12. С. 2136 2148. 2013 г.