

ОЦЕНКА ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ АЛТУФЬЕВСКОГО ПРУДА

Галкина Елизавета Андреевна

студент, Московский педагогический государственный университет, РФ, г. Москва

Юров Артем Вадимович

студент, Московский педагогический государственный университет, РФ, г. Москва

Ерошенко Василий Иванович

научный руководитель, канд. пед. наук, доцент, зав. кафедры экологии и природопользования, Московский педагогический государственный университет, РФ, г. Москва

Ежедневно, жители Москвы подвергаются негативному воздействию города, из-за чего появляется необходимость в появлении зеленых островков в каждом районе. В таких местах, люди занимаются спортом, гуляют с детьми и животными. Однако, расположение зеленых территорий прямым образом сказывается на качестве воздуха, воды и почвы. Чаще всего, оценивается состояние воздушной среды, так как оно меняется очень интенсивно. Но в некоторых случаях, загрязнение водной или почвенной среды, может быть даже более выражено. Так как Алтуфьевский пруд является объектом отдыха горожан, качество воды в нём является важным фактором, как для жителей района, так и для флоры и фауны обитающей в водоеме и вблизи него. Данный водный объект в работе рассматривается как водоём рыбохозяйственного значения, так как местные жители ежедневно посещают его с целью вылова рыбы.

Целью работы является оценка экологического состояния Алтуфьевского пруда. Пруд находится на северо-востоке города Москвы в районе Лианозово. Водоем располагается в сложных экологических условиях: с северо-запада в него впадает река Самотека, с севера - ручей, оба этих водных потока протекают вблизи МКАД и содержат соединения, смывающиеся с дороги – бензапирен, нефтепродукты, противогололедные реагенты и др. вредные вещества, производимые двигателями автомобилей и смываемыми с дороги реагентами.

Для отбора проб были выбраны 6 точек (рис.1):



Рисунок 1. Точки отбора проб воды [составлено авторами]

Отбор и анализ проб осуществлялся в два этапа. Первый отбор образцов состоялся 20.11.2020, второй - 05.12.2020. После чего, образцы вод сразу были доставлены в лабораторию ГБОУ 1449 города Москвы и анализировались по стандартным методикам оценки качества вод рыбохозяйственного значения [1].

В ходе работ была определена кислотность, окислительно-восстановительный потенциал, а также концентрация некоторых макро- и микрокомпонентов на каждой из точек. Так как анализ образцов был проведен в два этапа, нам удалось проследить изменения компонентного состава вод Алтуфьевского пруда.

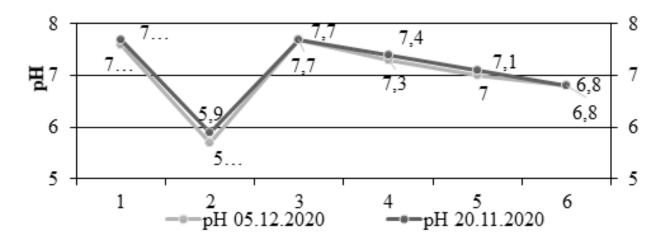


Рисунок 2. Показатели кислотности

Кислотность образцов меняется от слабощелочной в точке №1(рис.2), расположенной вблизи Алтуфьевского шоссе, откуда вытекает река Самотека, до кислотной в точке №2, к данной точке прилегает заболоченный участок, граничащий с МКАД. Далее, воды снова меняются в

сторону щелочных, кислотность снижается в точке №6, это место впадения реки Самотеки, берущей свое начало с заболоченной территории Алтуфьевского лесопарка. В зависимости от дня, диапазон изменения кислотности водной среды незначителен. Показатель рН во всех точках лежит в пределах ПДК – от 6 до 9 [2].

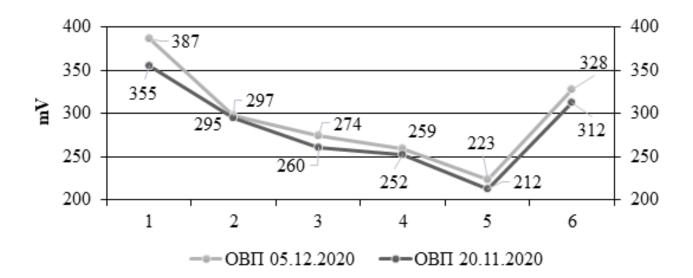


Рисунок 3. Окислительно-восстановительный потенциал

Максимальное значение ОВП (рис.3) выявлено в точках №1, №2 и №6, так как здесь наблюдается усиление течения из-за впадения/вытекания рек. А значит, вода более насыщена кислородом. В точках № 3, №4 и №5, показатель ОВП самый низкий, что говорит о восстановительной среде и недостатке свободного кислорода. Это связано с активными процессами разложения органики, которые возникают в следствие слабого течения и складывающихся застойных условий. В образцах, собранных в первый день, показатель ОВП выше, чем во второй. Это связанно с более высокой скоростью ветра 20.11.20, что способствовало усиленному волнообразованию и насыщению вод кислородом. В каждом образце показатель ОВП находится в пределах ПДК – от 100 до 700 мВ [1].

Результаты проведённых качественных и количественных анализов представлены в таблице 1.

 Таблица 1.

 Химический состав образцов воды

ПДК			Минеральный состав, мг/л					
	NO ₃		NO ₂		$\mathrm{NH_4}^+$		Mg	
	ПДК - 40		ПДК - 0,08		ПДК - 0,5		ПДК - 40	
№ точек	20.11	05.12	20.11	05.12	20.11	05.12	20.11	05.12
1	1	1	0,1	0,2	0	0	31,2	33,8
2	2	3	1	1	2	2	47,2	49,7
3	2	2	0,2	0,3	0	0	32,1	33,8
4	1	1	0,1	0,2	1	0	31,5	33,7
5	3	3	0,8	0,9	1	1	34,2	36,4
6	6	7	1	1	4	5	41,6	42,9

Содержание нитритов и аммония, превышает ПДК в точке №6. На этом участке в пруд

впадает река Самотека, которая, выше по течению, проходит близ гаражных кооперативов и МКАД. С большой вероятностью можно утверждать о том, что река приносит данные вещества за счет загрязнения продуктами обслуживания автомобилей (моющие средства, охлаждающая жидкость, омыватель для стекол и тд). Высокие показатели всех веществ можно наблюдать и в точке №2. В этом месте в пруд впадают болотные стоки с большим содержанием разложившейся органики, данный участок находится недалеко от МКАД и подвергается загрязнению с полотна автодороги, которая обрабатывается различными жидкостями-антиобледенителями, которые в свою очередь попадают в пруд. Высокое содержание магния и хлоридов выявлено в точках №2 и №6 (в точке №2 хлориды превышают ПДК в несколько раз). Значительное содержание данных веществ в этих точках, свидетельствует о попадании в воды Алтуфьевского пруда противогололедных реагентов (хлористый кальций и пр.), которые поступают с водотоками, омывающими МКАД.

Стоит отметить, что 05.12, практически на всех точках, показатели изучаемых веществ выше, чем в образцах, собранных и исследованных 20.11. Дело в том, что в данный период погода значительно менялась, часто выпадал дождь со снегом, создавая опасную ситуацию на дорогах. Данная ситуация повлекла за собой увеличение использования противогололедных компонентов и моющих средств, используемых в обслуживании автомобилей. С выпадающими осадками, вещества смывались с МКАД и попадали в придорожные воды, а далее переносились в пруд.

Исходя из проведённых исследований, можно сделать вывод что водные потоки, протекающие рядом с МКАД и впадающие в водоём (река Самотека и ручей впадающий с севера в исследуемый водоём) загрязняют его вредными веществами: в точках впадения этих водотоков превышены показатели хлоридов, гидрокарбонатов, нитратов и аммония. Однако к устью пруда вода становится чище, это означает, что водоём полностью справляется с загрязнителями, а само загрязнение имеет локальный характер.

В ходе работы было изучено качество воды в Алтуфьевском пруду, а также влияние антропогенных факторов на исследуемый объект. Полученные данные позволяют сделать следующие выводы:

- В точках 2 и 6 были отмечены превышения концентраций различных веществ по ПДК, причиной загрязнения является МКАД, вредные вещества с которой попадают в водоём в районе этих точек.
- Уровень вредных веществ 05.12.2020 выше, чем 20.11.2020 мы считаем, что причиной является обработка автомобильного полотна различными солями, которые в дальнейшем оказываются в водоёме.
- К устью пруда пробы воды соответствуют ПДК, что говорит нам о том, что загрязнение пруда в целом не велико и носит локальный характер.

Список литературы:

- 1. ГОСТ 17.1.2.04-77 «Охрана природы (ССОП). Гидросфера. Показатели состояния и правила таксации рыбохозяйственных водных объектов».
- 2. Приказ Министерства сельского хозяйства Российской Федерации от 13 декабря 2016 года N 552 «Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения» // Российская газета. 2017. 16 января.