

СИСТЕМЫ АВТОМАТИЗАЦИИ ИЗГОТОВЛЕНИЯ НАНОМАТЕРИАЛОВ КАК СПОСОБ ЗАЩИТЫ ПЕРСОНАЛА

Будаев Владислав Владимирович

студент, кафедра телекоммуникационных систем Уфимского государственного технического авиационного университета, РФ, г. Уфа

Салаватов Ильяс Римович

студент, кафедра электромеханики Уфимского государственного технического авиационного университета, РФ, г. Уфа

Юсупов Радик Марсилович

студент, кафедра электронной инженерии Уфимского государственного технического авиационного университета, РФ, г. Уфа

Основным препятствием на пути к повсеместному использованию наноматериалов является достаточно затратный и трудоемкий по своей сути процесс их производства. Проблема заключается также и в том, что воздействие наночастиц на человеческий организм ещё недостаточно изучено, из-за чего на предприятиях, занятых в этой отрасли необходимо соблюдение мер безопасности, как при работе с особо опасными химическими материалами [2].

Развитие нанотехнологий делает их все более распространенными и доступными, а это значит, что всё больше возрастают возможные контакты с наночастицами как работников предприятий наноиндустрии, так и пользователей продукции. В таких условиях становятся важны исследования, касающиеся безопасности наноматериалов и возможных средств защиты от потенциально вредных частиц. Если первым вопросом занимается новая научная дисциплина, получившая название «нанотоксикология», то вторая задача, заключающаяся в разработке автоматических средств контроля, ложится на представителей таких направлений как стандартизация и автоматизация.

Разработан ряд предложений с точки зрения автоматизации процесса производства, который можно разделить на возможности по автоматизации систем безопасности и охраны труда и на системы полного исключения контакта человека с опасными объектами путем полной автоматизации процесса изготовления наноматериалов.

«Согласно требованиям международного стандарта ISO/TR 12885:2008(Е) на предприятиях наноиндустрии должны быть предусмотрены мероприятия, уменьшающие экспозицию наночастицами работников производств и населения» [1]. В круг данных мероприятий среди стандартных мер по обеспечению безопасности на производстве с химически опасными веществами входят несколько специфичных требований [3].

Они заключаются в том, что могут быть использованы стандартные технологии, предотвращающие попадание частиц пыли в рабочую зону, но при этом должны быть разработаны и применены дополнительные меры защиты:

а) Автоматическая блокировка производственного цикла в случае обнаружения системой неисправности в технологическом обеспечении, аварийной ситуации. Это может быть достигнуто разработкой специального программного обеспечения, которое, принимая

информацию с установленных в оборудование датчиков, автоматически или под контролем оператора, осуществляет проверку всей системы на всех этапах производственного цикла.

- б) Автоматизация систем контроля, сигнализации и управления производственным циклом, в особенности на этапах, где может произойти внезапный выброс потенциально опасных частиц в атмосферу рабочей зоны. Актуальна также автоматизация систем оповещения сотрудников о подобных происшествиях для своевременного удаления персонала из зоны выброса.
- в) Частичная автоматизация и механизация процессов производства, распаковки, расфасовки и транспортировки наноматериалов (материалов для их изготовления) для сведения к минимуму контакта обслуживающего персонала с вредными веществами.

Соблюдение всех этих мер предосторожности необходимо, пока не будут досконально исследованы особенности поведения частиц в наномасштабе и последствия их попадания в организм человека.

Список литературы:

- 1. Хайруллин Р.З., Самарин Е.В. Особенности обеспечения безопасных условий труда работников предприятий наноиндустрии // Вестник Казанского технологического университета. 2014. №15. С.331-333.
- 2. Анциферова И. В., Макарова Е. Н. Методы производства наноматериалов и возможные экологические риски // Вестник ПНИПУ. Машиностроение, материаловедение. 2013. №4. С.59-67.
- 3. Решетникова С.Н., Мишин А.А. Состояние и перспективы развития нанотехнологий // Решетневские чтения. 2009. №13. С.697-698.