

БРОНХИАЛЬНЫЙ ЭКЗОКРИНОЦИТ (КЛЕТКА КЛАРА)

Бондарева Екатерина Александровна

студент, Учреждение образования «Гомельский государственный медицинский университет», Республика Беларусь, г. Гомель

Барабанова Анна Александровна

студент, Учреждение образования «Гомельский государственный медицинский университет», Республика Беларусь, г. Гомель

Маслова Анна Сергеевна

студент, Учреждение образования «Гомельский государственный медицинский университет», Республика Беларусь, г. Гомель

Потылкина Татьяна Валерьевна

научный руководитель, старший преподаватель, Учреждение образования «Гомельский государ-ственный медицинский университет», Республика Беларусь, г. Гомель

Введение

Клетки Клара составляют приблизительно 9 % от всех эпителиальных клеток в легких человека. Они практически отсутствуют в проксимальных частях бронхиального дерева. Около 11-22 % этих клеток находятся в терминальных бронхиолах, соответственно, 78-89 % — в респираторных бронхиолах. Клетки Клара также встречаются в матке при беременности, так как они являются стволовыми клетками дыхательных путей у зародыша. Также их можно обнаружить в почках, где происходит двухрецепторный путь катаболизма секреторного белка клеток [1].

Бронхиальный экзокриноцит был открыт в 1937 году Максом Клара. Для проведения своих опытов в Лейпциге, он использовал жертв Третьего рейха. Впервые эпоним "клетки Клара" появился во французском варианте "cellule de Clara", его использовал Альберт Поликард в 1955 г. в структурном описании бронхиолы крысы [2].

Цель

Проанализировать научные литературные данные, связанные со строением и функциональной ролью клеток Клара.

Материалы и методы исследования

Изучение научно-методической литературы, анализ и обобщение данных.

Результаты исследования и их обсуждение

Клетки Клара — высокие клетки с куполообразной апикальной областью, лишенные цилий. Они составляют 80% эпителиальной популяции терминальных бронхиол, обращенные своей апикальной поверхностью в их просвет [1]. В клетке Клара выделяют базальную и апикальную поверхности. Исследования с помощью электронного микроскопа показали, что округлое ядро

расположено в центре. Гладкая и шероховатая эндоплазматическая сеть локализованы преимущественно на апикальной поверхности. В клетке хорошо развит комплекс Гольджи. На апикальной поверхности содержатся плотные секреторные гранулы и многочисленные везикулы. Эти органеллы свидетельствуют о высоком уровне метаболической активности.

Бронхиальный экзокриноцит выделяет ферменты, которые разрушают слизь из проксимальных воздухоносных путей. Но в то же время, одной из важнейших функций данных клеток является секреция слизи в просвет бронхиол. Слизь включает в себя гликозаминогликаны, лизоцим и один из типов антител — IgA. Эти вещества играют важную роль в защите бронхиол [3]. Защитная функция осуществляются за счет содержащихся в клетке ферментов, предназначенных для детоксикации химических соединений, поэтому число клеток Клара увеличено у курильщиков.

Клетка Клара входит в сурфактантную систему легких. Она участвует в обновлении сурфактанта, разрушая его. Также синтезирует белки SP-A, SP-B, SP-D. SP-A и SP-D являются гидрофильными белки, обеспечивающие иммунную защиту легких. SP-B - участвует в обеспечении возможности дыхания, уменьшает альвеолярное поверхностное натяжение и содействует равномерному распределению сурфактанта [4].

Бронхиальный экзокриноцит являются основным источником эотаксина, который привлекает эозинофилы в дыхательные пути. Это имеет важное значение для организации аллергического астматического ответа [5].

Клетки Клара способны к размножению. При травме дыхательных путей клетка Клара выступает в роли стволовой клетки для восстановления эпителия бронхиол и для пополнения альвеолярных эпителиальных клеток. Этот процесс называется альвеолярная бронхиолизация.

Выводы

Таким образом, собранные нами данные позволяют характеризовать бронхиальный экзокриноцит как полифункциональную клетку дыхательных путей. Бронхиальный экзокриноцит или клетка Клара является участником сурфактантной системы легких - участвует в выработке компонентов сурфактанта и утилизации продуктов его распада, обеспечивает иммунологическую защиту, детоксикацию химических соединений, выделяет слизь. При низком процентном содержании клеток Клара в эпителии дыхательных путей они обеспечивают регуляцию и индукцию патологических изменений в организме.

Список литературы:

- 1. Boers JE, Ambergen AV, Thunnissen FB/Number and proliferation of clara cells in normal human airway epithelium// Am J RespirCrit Care Med. 1999;159:P. 1585-1591.
- 2. Winkelmann, A., Noack, T. The Clara cell: a "Third Reich eponym"? / Winkelmann, A., Noack, T // European Respiratory Journal. 2010. Vol. 36, N 4. P. 722–727.
- 3. Боркина, А.Н. Структурно-функциональная реорганизация секретор-ных экзокриноцитов (клеток Клара) и альвеолоцитов 2 типа при воздействии дестабилизирующих факторов и при хронической обструктивной болезни легких: автореф. дис. ... канд. мед. наук: 03.00.25; 03.00.25 / А.Н. Боркина; Оренб. гос. мед. акад. О., 2008. 22 с.
- 4. Сивакова, С.Д. Эпоним клетка клара: этический аспект (обзор литера-туры) / Сивакова, С.Д.// Проблемы и перспективы развития современной ме-дицины : материалы сборника научных статейХ Республиканской научно-практической конференциис международным участием студентов и молодых ученых, Гомель, 3-4мая. 2018 г. / Гом. гос. мед. ун-т ;редкол.: А.Н. Лызиков [и др.]. Гомель, 2018. С. 1068–1070.
- 5. Sonar, S.S. Clara cells drive eosinophil accumulation in allergic asthma /SonarS.S. [et al.]// European Respiratory Journal. 2012. Vol. 39, N_2 2. P. 429–438.