

МОДЕЛИРОВАНИЕ КОЛОННЫ БЛОКА СТАБИЛИЗАЦИИ УСТАНОВКИ ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА

Маркелов Максим Евгеньевич

магистрант, Уфимский государственный нефтяной технический университет, РФ, г. Уфа

Ахметов Рустам Фаритович

научный руководитель,

Гидроочистка - гидрогенизационный процесс, способствующий очистке нефтяных фракций или остатков от вредных примесей - от серы, азота, кислорода, непредельных и полициклических ароматических углеводородов. В частности, гидроочистка позволяет уменьшить коррозионную агрессивность топлив и их склонность к образованию осадков, уменьшить количество токсичных газовых выбросов в окружающую среду [4]. Колонна блока стабилизации является одним из важных элементов установки гидроочистки, так как влияет на качество выпускаемой продукции; от режима работы колонны зависит температура вспышки и коррозионная стойкость дизтоплива, а также конец кипения бензина.

Основным недостатком существующего режима работы блока является слишком высокая температура конца кипения (к.к. = 200 °C) побочного продукта – бензина-отгона, что не позволяет вовлекать его в товарные бензины (к.к. = 180 °C). Возможности же вовлечения отгона в дизельное топливо лимитируются ограничением на температуру вспышки ДТЛ. Проблема может быть исчерпана при снижении температуры конца кипения отгона до 180 °C, что достижимо при изменении режима работы блока стабилизации. Отсюда следует, что температура конца кипения бензина-отгона (и его выход) могут быть снижены при уменьшении температуры питания колонны, а также при увеличении расхода орошения.

Целью работы является выработка рекомендаций по коррекции режима для обеспечения требуемого изменения фракционного состава отгона.

Для достижения поставленной цели была разработана адекватная модель технологического процесса с помощью методов математического моделирования и программно-информационного комплекса *HYSYS* фирмы *Aspentech (США)*;

Следующим этапом было исследование зависимости показателей качества продукции от режима работы колонны стабилизации;

На основании полученных данных были предложены способы оперативного контроля фракционного состава отгона по текущим режимным параметрам промышленной установки;

Обобщеные результаты исследования представленны в таблице 1.

Таблица 1.

Результаты исследования режима колонны К-2

Параметр	Единицы	Вариант 1	Вариант 2	Вариант 3	Ba	ариант
	измерения					
						ĺ
						'

Температура питания	°C	229	229	229	229
Давление верха	KCC/CM ³	1,7	1,7	1,7	1,7
Температура низа	°C	289	289	289	289
Температура верха	°C	130	125	124	122
Расход орошения	кг/час	20750	22820	22550	25000
Бензин с установки НК	°C	29	29	29	29
Бензин с установки 10%	°C	68	67	66	65
Бензин с установки 30%	°C	103	102	102	101
Бензин с установки 50%	°C	116	113	112	109
Бензин с установки 70%	°С	129	125	124	121
Бензин с установки 90%	°C	143	136	135	132
Бензин с установки 95%	°C	153	141	138	135
Бензин с установки КК	°C	193	184	180	174
ДТ В ПАРК НК	°C	104	105	105	104
ДТ В ПАРК 5%	°C	170	169	169	168
ДТ В ПАРК 10%	°C	184	183	183	182
ДТ В ПАРК 30%	°C	225	224	224	224
ДТ В ПАРК 50%	°С	263	262	262	262
ДТ В ПАРК 70%	°С	300	300	300	299
ДТ В ПАРК 90%	°C	345	345	345	345
ДТ В ПАРК 95%	°C	358	358	358	358
ДТ В ПАРК КК	°C	384	384	384	384

Сопоставив полученные результаты исследований с нормами технологического режима и характеристиками готовой продукции наиболее оптимальным является режим колонны по варианту №3, который позволяет получать бензин-отгон с концом кипения180°C. Качество дизельного топлива по фракционному составу соответствует регламенту - 95% выкипает до 360°C (таблица 2).

Таблица 2. Сравнительный анализ результатов исследований с характеристиками готовой продукции

Анализируемый продукт	Контролируемые показатели	Но	p
Гидроочищенное дизельное топливо -компонент дизельного топлива EBPO:	Температура вспышки, определяемая в закрытом тигле, °С, выше		55

летнего и межсезонного по	Фракционный состав	1 1
	при температуре 250 °C перегоняется, % об,	
ГОСТ 32511;	менее	0.5
		65
- для умеренного климата по	при температуре 350 ⁰ С перегоняется, % об, не	
ГОСТ Р 52368	менее	
		85
	95 % об перегоняется при температуре, ⁰ С, не	
	выше	360
	Массовая доля серы, мг/кг, не более для топлива:	300
	гиссовая доля соры, міткі, не облес для гонянва.	
	К4 по ГОСТ 32511;	
	вид II по ГОСТ Р 52368;	50
	VE = 2 FOCT 22511	50
	К5 по ГОСТ 32511;	30
	вид III по ГОСТ Р 52368	10
		10
	Коррозия медной пластинки, (3ч при $50~^{0}$ C) ед. по	Класо
	шкале	
	Townsons now my or a grown	3.5111111
Бензин-отгон	Температура помутнения, ^о С, не выше Фракционный состав	мину
DOIIOMIT-OTTON	конец кипения, ⁰ С, не выше	180

Список литературы:

- 1. Анализ работы блока стабилизации установки гидроочистки дизельного топлива. Учебнометодическое пособие по выполнению лабораторной работы. УГНТУ-2021.
- 2. В.А. Жилина, Н.А. Самойлов Математическое моделирование процесса раздельной гидроочистки предварительно фракционированного дизельного топлива / Сетевое издание «Нефтегазовое дело». 2021. №1
- 3. Информационно-технический справочник по наилучшим доступным технологиям. Федеральное Агентство по Техническому Регулированию и Метрологии. ИТС30-2017
- 4. Кузнецов О. А. Начало работы в Aspen HYSYS. М.-Берлин: Директ-Медиа, 2015.