

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ГИБРИДНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ

Байбурин Вадим Наилевич

студент, кафедра авиационных двигателей Уфимского государственного технического авиационного университета, РФ, г. Уфа

Исаева Анастасия Леонидовна

студент, кафедра авиационных двигателей Уфимского государственного технического авиационного университета, РФ, г. Уфа

Шарафутдинов Артем Артурович

студент, кафедра авиационных двигателей Уфимского государственного технического авиационного университета, РФ, г. Уфа

Для широкого освоения космического пространства необходимы ракетные двигательные установки, характеризующиеся не только повышенными конструктивно-энергетическими характеристиками, но и обладающими рядом особых качеств. К ним можно отнести возможность быстрого выключения (точная дозировка импульса тяги), повторный запуск после длительного перерыва в работе, широкий диапазон регулирования величины и высокие значения тяги двигателя и двигательной установки в целом.

В настоящее время на ракетах применяются двигатели, работающие на химических топливах, причем в основном это жидкостные (ЖРД) и твердотопливные (РДТТ) двигатели. Помимо совершенствования ЖРД и РДТТ и разработки нехимических ракетных двигателей (электрические и ядерные) стоит обратить внимание на двигатели использующие химические топлива смешанного агрегатного состояния [3]. Топлива, компоненты которых находятся в различных агрегатных состояниях, называются комбинированными. Наиболее перспективными среди них являются композиции, у которых один компонент твердый, а другой — жидкий. Твердо-жидкие топлива принято именовать гибридными, а двигатели на этих топливах — соответственно гибридными ракетными двигателями (ГРД). В начале 60-х годов особенности и свойства этих двигателей стали объектом усиленного изучения во многих странах (США, Франция, ФРГ, Швеция, Япония, Италия и др.) [2].

Конструкция ГРД предполагает наличие одного из компонентов в виде твердого заряда и наличие емкости с жидким или газообразным вторым компонентом. Различают две схемы ГРД – прямая и обратная. В прямой схеме горючее находится в твердом агрегатном состоянии и окислитель в жидком, в обратной в качестве твердого компонента представлен окислитель. Особой разновидностью ГРД являются двигатели, работающие на трех компонентах топлива [1]. Твердый компонент также в виде заряда находится в камере, а два жидких в топливных баках.

Гибридный ракетный двигатель состоит из зарядной камеры с размещенной в ней зарядом твердого компонента топлива, по оси которого выполнен сквозной канал, форсуночной головки камеры сгорания, камеры дожигания, бака с жидким компонентом топлива, магистрали подачи жидкого компонента топлива и элементов управления [5]. Максимальная эффективность ГРД достигается поддержанием на постоянном уровне следующих параметров:

· давление в камере;

- соотношение компонентов топлива на оптимальном уровне на выходе из канала заряда;
- массовый расход жидкого компонента топлива.

По удельным энергомассовым характеристикам гибридный ракетный двигатель занимает промежуточное положение между ракетными двигателями на твердом топливе и жидкостными ракетными двигателями. Вследствие использования топлив с большим запасом химической энергии ГРД имеют значения удельного импульса, большие чем у РДТТ, но не выше чем у ЖРД [4].

Достоинством ГРД может являться повышенная надежность конструкции, которая объясняется отсутствием устройств и магистралей, необходимых для подачи второго компонента топлива, уменьшенная стоимость разработки и изготовления двигательной установки и упрощённая эксплуатация. Топливо, представленное в виде твердого заряда, является практически инертным веществом. Производство такого топлива пожаро- и взрывобезопасно и потому простое, и дешевое. Комбинированное топливо может быть самым безопасным из всех высокоэнергетических топлив [5].

Так как скорость горения твердого компонента регулируется путем изменения расхода второго компонента топлива дефекты заряда не влияют на скорость горения или параметры процесса. Стабильность характеристик ГРД в процессе работы установки не требует термостатирования благодаря слабой чувствительности рабочего процесса к давлению в камере, температуре компонентов топлива и дефектам заряда. Важным достоинством гибридных ракетных двигателей является возможность многократного запуска и большой диапазон регулирования тяги, что немаловажно решения проблем по освоению космоса.

Список литературы:

- 1. Алемасов В.Е. Теория ракетных двигателей: учеб. для вузов. М.: Машиностроение, 1980.
- 2. Головков Л.Г. Гибридные ракетные двигатели. М.: Воениздат, 1976.
- 3. Егорычев В.С. Теория, расчет и проектирование ракетных двигателей. Учебное пособие. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2011.-143 с.
- 4. Зорин В.А., Молчанов С.Ф. Двигательные установки и энергосистемы ракет. Учебное пособие. Челябинск: ЮУрГУ, 2010. 133 с.
- 5. Квасников Л.А. и др. Теория и расчет энергосиловых установок космических летательных аппаратов. М.: Изд-во МАИ, 2001. 480 с.