

СТРУКТУРА, ДОСТОИНСТВА И ВИДЫ УПРАВЛЕНИЯ МУЛЬТИКОПТЕРАМИ

Дажунц Богдан Эдуардович

студент, кафедра электромеханики Уфимского государственного технического авиационного университета, РФ, г. Уфа

Тазетдинов Айдар Азатович

студент, кафедра электромеханики Уфимского государственного технического авиационного университета, РФ, г. Уфа

Бабушкин Иван Николаевич

студент, кафедра электронной инженерии Уфимского государственного технического авиационного университета, РФ, г. Уфа

Лушпай Илья Владиславович

студент, кафедра электронной инженерии Уфимского государственного технического авиационного университета, РФ, г. Уфа

Наиболее востребованным беспилотным летательным аппаратом вертолетного типа является мультикоптер. [1, с. 1] Типичный мультикоптер – это дистанционно-управляемый или автономный мультиротационный БЛА с тремя (трикоптер), четырьмя (квадрокоптер), шестью (гексокоптер), восемью (октокоптер) или, реже, двенадцатью бесколлекторными электродвигателями с винтами. Для энергоэффективных систем применяется схема с наименьшим числом роторов, основным недостатком такой схемы является низкая подъёмная сила, а также то, что при выходе из строя одной оси аппарат неминуемо потеряет контроль. В случаях с шестивинтовыми и более аппаратами допускается выход оси из строя, при котором будет возможность совершить экстренную безаварийную посадку.

Основными достоинствами квадрокоптера являются:

- высокое отношение тяга/вес;
- обеспечивается благодаря четырем двигателям;
- простота конструкции:
- отсутствие автомата перекоса, как у классического варианта вертолета;
- · высокая манёвренность (в отличие от самолетов или планеров);
- неприхотливость к погоде;
- высокая стабильность в полёте;
- малые вибрации по сравнению с вертолётами.

В полете мультикоптер поддерживает горизонтальное положение относительно поверхности земли, может зависать, перемещаться в стороны, вверх и вниз. При наличии дополнительного

оборудования есть возможность осуществлять полуавтономные и автономные полеты. Для компенсации возникающего момента, т. е. исключения вращения корпуса, у квадрокоптера, например, передний и задний винты вращаются по часовой стрелке, а левый и правый - против часовой стрелки.

Начало движения квадрокоптера состоит в увеличении скорости вращения (тяги) части винтов, что выводит квадрокоптер из балансирующего состояния (зависания на месте). Увеличение скорости части винтов приводит к наклону квадрокоптера и началу движения в нужном направлении. Поворот устройства вокруг своей оси осуществляется путем ускорения вращения переднего и заднего винтов, при этом левый и правый винт замедляются. Таким образом происходит вращение квадрокоптера по часовой стрелке. Вращение против часовой стрелки осуществляется аналогично. Управление квадрокоптером и его стабилизация в воздухе обеспечивается группой датчиков, взаимодействующей с полетным контроллером, который путем передачи управляющих сигналов на двигатели обеспечивает выполнение основных режимов полета устройства. Контроллер производит расчет скорости для каждого из винтов квадрокоптера с учетом компенсации внешнего воздействия ветра.

Управление аппаратами осуществляется как по радиоканалу (посредством передатчика и радиоприемника), так и революционными методами, например, по Wi-Fi через iPhone с использованием датчика положения. Дополнительно аппарат может комплектоваться платой навигации, GPS-приемником, компасом и др. оборудованием.

Список литературы:

- 1. Ерохин Е., Коломиец А. Мультикоптеры: новый вид. [Электронный ресурс]. URL: http://www.uav.ru/articles/multicopters.pdf (Дата обращения: 11.04.2022).
- 2. Иноземцев Д.П. Беспилотные летательные аппараты: теория и практика. [Электронный pecypc]. URL: http://www.credo-dialogue.com/getattachment/6cf5bf18-cf53-4532-b5bd-1ed04dabc234/Bespilotnue-letatelnue-apparatu.aspx (Дата обращения: 15.04.2022).
- 3. Павлушенко М., Евстафьев Г., Макаренко И. Беспилотные летательные аппараты: история, применение, угроза распространения и перспективы развития М.: Права человека. 2005. $611~\rm c.$
- 4. Шивринский В.Н. Бортовые вычислительные комплексы навигации и самолётовождения: конспект лекций / В.Н. Шивринский. Ульяновск: УлГТУ, 2010. 148 с.