

АНАЛИЗ СПОСОБОВ КОНТРОЛЯ ДЕФЕКТОВ КОМПОЗИТНЫХ КОНСТРУКЦИЙ

Лукьянов Александр Сергеевич

студент, Белгородский государственный технологический университет им. В.Г. Шухова, Р Φ , г. Белгород

Любимый Николай Сергеевич

научный руководитель, Белгородский государственный технологический университет им. В.Г. Шухова, РФ, г. Белгород

Большая часть современных изделий, связанных со строительством, изготовлением различной техники, деталей интерьера и т.п. состоит из композитных материалов. Они используются человеком веками, и все большее количество изделий изготавливается из данных материалов. При объединении двух и более компонентов с различными физическими или химическими свойствами, мы можем получить новый материал, свойства которого будут отличными от характеристик исходных компонентов, это и будет называться композитным материалом.

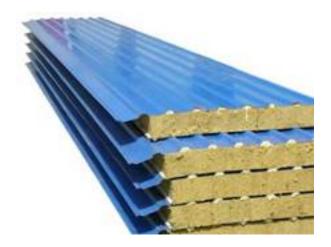


Рисунок 1. Наглядный пример возможного композитного материала

Контроль брака на производстве композитных конструкций стоится из двух составляющих: профилактика брака на стадии подготовки и непосредственно в производстве. Организация технического контроля заключается в выборе и обосновании средств и методов контроля, и разработке методов и регулярном проведении анализа брака и дефектов. Существуют различные методы контроля качества продукции из композитных материалов. Например: физические, химические и другие. Основным отличием между данными методами является остается ли изделие целостным или разрушается.

К разрушающим испытаниям относят:

- Механические испытания;
- Теплофизические исследования.

К неразрушающим испытаниям относят:

- Магнитные;
- Акустические;
- Радиационные.

Дефект	Акусти-	Компью-	Teve-	Радио-	Шеро-	Изме-	Термо-	Ультра-	Визу-
	veckar	терная	NCK9-	графия,	rpa-	рение	rpa-	звуко-	ально-
	SMMC-	TOMO-	1610	радио-	фия	дефор-	фия	BOÑ	HOME-
	CHR	графия		RNDOXO		мации		KOHT-	ритель-
								роль	ный
									KOHT-
									ропь
Загрязнение		X		X				X	X
Повреждение нитей	X	×		X					
Расслоение	X	X			Х		X	X	X
Изменение		X		X			X	X	
плотности								"	
Деформация под					X	X			
нагрузкой									
Нарушение		X			X		X	X	Х
Связей									
Нарушение	X	X					X	X	
связей между									
вологнами									
Hapyweisre		X		X			X		
СООСНОСТИ									
вологна									
Разрывы	X	X		X			X	X	X
Включения		X		X			X	X	X
Утечки	X		X					X	
Незакрепленные или подвижные части	×								
Мигротрещины	X	X		X	X			X	
Bnara		X		X			X		
Пористость	X	X		X			X	X	
Изменение		X		X	X		X	X	
топщины									
Недоотверждение								X	
Объемные		X							
включения									
Пустоты	X	X	X	X			X	X	

Рисунок 2. Дефекты, выявляемые методами неразрушающего контроля

Проанализировав данные из ГОСТ Р 56787-2015 мы можем увидеть, что больше всего дефектов может обнаружить метод компьютерной томографии, после него идет ультразвуковой контроль и тройку лидеров закрывает радиография и термография. Ультразвуковой контроль имеет одно преимущество перед томографией в том, что она распознает недоотверждения, которые в последствии могут повлиять на целостность конструкции.

Радиационные методы неразрушающего контроля основаны на регистрации и анализе проникающего ионизирующего излучения. Различия экспозиционной дозы излучения показывают, где находятся дефектные зоны. Это достаточно распространенный и хороший метод, но у него есть некоторые недостатки. Одним из них является невозможность выявления плоскостных дефектов: расслоения, ударные и усталостные повреждения и т.п.

При ультразвуковом методе происходит регистрация и анализ параметров упругих волн. Данный метод делится еще на несколько: эхометод и теневой метод. У него так же есть ряд недостатков.

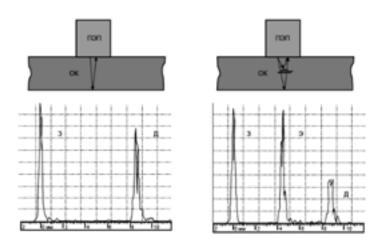


Рисунок З. Принцип выявления дефектов эхометодом. ПЭП - пьезоэлектрический преобразователь; З - зондирующий импульс; Д - донный сигнал; Э - эхосигнал от дефекта

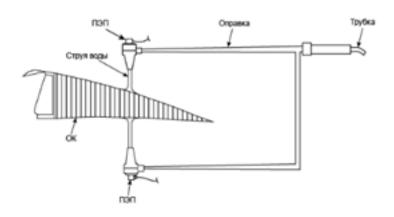


Рисунок 4. Ручной теневой контроль с использованием катящихся преобразователей

Проанализировав методы неразрушающего контроля дефектов в композитных материалов мы видим, что существуют методы способные выявить большую часть возможных дефектов в готовой конструкции, но все таки существует процент дефектов, которые могут пропустить при проверке композитной конструкции, поэтому на предприятиях часто используется несколько различных методов, результаты которых сопоставляются и уже по полученным данным делаются выводы.

Список литературы:

- 1. Баурова Н.И., Зорин В.А. Применение полимерных композиционных материалов при производстве и ремонте машин: учебное пособие. М.: МАДИ. 2016. 264 С.
- 2. Баурова Н.И. Диагностирование и ремонт машин с применением полимерных материалов: монография. М.: ТехПолиграфЦентр, 2008. 280 С.
- 3. Андреева А.В. Основы физикохимии и технологии композитов: учеб. пособие. М.: ИПРЖР, 2001. 192 С.
- 4. Берлин А.А. Полимерные композиционные материалы: структура, свойства, технология:

учеб. пособие. 3-е испр. изд. СПб.: ЦОП «Профессия», 2011. 560 С.

- 5. Зорин В.А., Баурова Н.И. Ремонт теплонагруженных элементов машин и оборудования с использованием наполненных полимерных материалов // Ремонт, восстановление, модернизация. 2013. \mathbb{N} 4. С. 16-18.
- 6. Любимый Н.С., Чепчуров М.С., Тетерина И.С. Обработка комбинированной металл-металлополимерной плоской поверхности детали пресс-формы // Вестник БГТУ им. В.Г. Шухова. 2017. № 6. С. 119–123.