

# АНАЛИЗ ЭЛЕКТРИЧЕСКОЙ НЕОДНОРОДНОСТИ QRS ПО ПАРАМЕТРАМ ЭКГ ВЫСОКОГО РАЗРЕШЕНИЯ СТУДЕНТОВ

### Гневушев Владислав Игоревич

студент, ФГБОУ ВО Воронежский государственный университет, РФ, г. Воронеж

#### Ананко Юлия Викторовна

студент, ФГБОУ ВО Воронежский государственный университет, РФ, г. Воронеж

#### Губанова Карина Зелимхановна

студент, ФГБОУ ВО Воронежский государственный университет, РФ, г. Воронеж

## Сулин Валерий Юрьевич

научный руководитель, доц.,  $\Phi\Gamma$ БОУ ВО Воронежский государственный университет, Р $\Phi$ , г. Воронеж

В наше время очень актуален метод электрокардиографии высокого разрешения. С появлением метода ЭКГ высокого разрешения с помощью усреднения сигнала стало возможным неинвазивное выявление низкоамплитудных сигналов, локализованных в конце QRS-комплекса и названных поздними потенциалами желудочков [2].

Целью данной работы являлась регистрация и анализ ЭКГ высокого разрешения студентов для выявления электрической неоднородности QRS.

Исследования проведены в лаборатории электрофизиологии и функциональной диагностики им. проф. А.И. Лакомкина кафедры физиологии человека и животных медико-биологического факультета ВГУ. Обследовано 16 девушек в возрасте 18-24 лет.

Регистрацию ЭКГ высокого разрешения осуществляли в положении сидя в течение 5 минут с помощью аппаратно-программного комплекса «Нейрон-спектр 4П» (ООО «Нейрософт», Россия) в грудном отведении с частотой дискредитации 2 кГц, фильтром низких частот 0.05 Гц и фильтром верхних частот 75 Гц. Для регистрации использовались одноразовые электроды Skintact FS-50, которые крепили по окологрудинной линии (línea parasternális) в IV-V межреберье, один электрод крепили вентрально (соответствовал расположению V3), второй – дорсально на поверхность грудной клетки. Статистический анализ включал расчет средней длительности QRS-, QR- и RS-интервалов (мс), их среднего квадратического отклонения (СКО, мс), коэффициента вариации (КВ, %).

Для анализа амплитудно-временных параметров QRS с использованием языка программирования высокого уровня Delphi написана программа для выделения отдельных кардиоциклов и их синхронизации по максимуму R-зубцов. Для нивелирования микровольтных колебаний биопотенциалов, которые возникают при регистрации ЭКГ высокого разрешения, проводили усреднение 10 последовательных отдельных кардиоциклов.

По результатам исследования установлено, что средняя длительность QRS-интервала, который отражает быструю деполяризацию кардиомиоцитов желудочка до начала плато, составила  $60.39\pm1.5$  мс. Вариабельность QRS находилась в диапазоне от минимального

значения 47.0 мс до максимального - 67.5 мс с коэффициентом вариации 9.95%.

Средняя длительность QR-интервала, который отражает фазу быстрой деполяризации кардиомиоцитов, составила  $25.85\pm0.93$  мс. Вариабельность QR находилась в диапазоне от минимального значения 15.5 мс до максимального – 29.9 мс с более высоким коэффициентом вариации 14.5%.

Средняя длительность RS-интервала, отражающего 1 фазу реполяризации кардиомиоцитов, составила 34.93±0.75 мс. Вариабельность RS находилась в диапазоне от минимального значения 31.2 мс до максимального - 40.5 мс с коэффициентом вариации 8.64%.

Расчет относительной длительности QR-интервала показал, что период быстрой деполяризации в среднем составил 42.68% от общей продолжительности QRS-комплекса. Известно, что QR-интервал в основном отражает функциональное состояние потенциалуправляемых Na<sup>+</sup>-каналов, которые регулируют быстрый входящий ток Na<sup>+</sup>. Длительность RS-интервала характеризует кратковременный выходящий ток K<sup>+</sup> потенциал-чувствительных и Ca<sup>2+</sup>-независимых калиевых каналов, сопряженных с активируемым кальцием током Cl<sup>-</sup> [2]. По результатам анализа амплитудно-временных параметров QRS-комплекса установлено, что коэффициент вариации амплитуды R-зубца в группе обследованных студентов не превышал 10%, а аналогичный показатель длительности QRS был в 3 раза меньше.

Корреляционный анализ показал наличие сильных взаимосвязей (коэффициенты корреляции были больше 0,96) между усредненными параметрами QRS-интервалов обследованных студентов. Графический анализ подтвердил низкую вариабельность временных параметров QRS-комплекса ЭКГ обследованных студентов (рисунок).



Рисунок. Усредненные синхронизированные по R-зубцу QRS-интервалы ЭКГ обследованных студентов

- 1. Бокерия, О. Л. Ионные каналы и их роль в развитии нарушений ритма сердца / О. Л. Бокерия, А. А. Ахобеков // Анналы аритмологии. 2014. Т. 11, № 3. С. 176-184. DOI 10.15275/annaritmol.2014.3.6.
- 2. Иванов Г.Г. Электрокардиография высокого разрешения. Теоретические и методические аспекты использования метода / ГГ Иванов, В.Е. Дворников // Вестник Российского университета дружбы народов. Серия: Медицина. 1998. № 1. С. 850.