

XXXIX Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: естественные и медицинские науки»

ИССЛЕДОВАНИЕ ПЕНООБРАЗОВАНИЯ СИНТЕТИЧЕСКИХ МОЮЩИХ СРЕДСТВ В ВОДЕ РАЗЛИЧНОЙ ЖЕСТКОСТИ

Пименова Елизавета Дмитриевна

студент, Комсомольский-на-Амуре государственный технический университет, РФ, г. Комсомольск-на-Амуре

Проценко Александр Евгеньевич

научный руководитель, старший преподаватель кафедры ТПНП, Комсомольский-на-Амуре государственный технический университет, РФ, г. Комсомольск-на-Амуре

В различных отраслях современной промышленности всегда есть потребность в качественных моющих средствах. Особое место занимают бесконтактные моющие средства, применяемы на автомоечных комплексах и обладающих самым емким рынком в отрасли [1].

В качестве основного компонента синтетического моющего средства (СМС) могут использоваться как ионогенные, так и неионогенные ПАВ. В качестве анионных ПАВ широкое применение нашли алкилсульфаты, которые обладают прекрасными моющими свойствами, образуют обильную пену и хорошо понижают поверхностное натяжение, однако, данные вещества разрушаются в кислой среде, чувствительны к жесткости воды и обладают высоким раздражающим действием [2].

Поверхностная активность катионных ПАВ является следствием растворения в воде катионов, содержащих длинноцепочечные гидрофобные радикалы. В основном данный класс соединений представлен солями четвертичных аммониевых оснований [3; 4].

Отличительная особенность неионогенных ПАВ состоит в том, что они образуют ионов в водных растворах. Растворимость таких соединений обусловлена только функциональными группами, имеющими гидрофильный характер [5; 2].

Зачастую заявленное качество моющих средств соответствует действительности. Одной из главных проблем в таком случае может являться жесткость воды, используемой для разбавления суперконцентрата СМС. В данной работе отражены данные экспериментально исследования влияния воды различной жесткости на пенообразующую способность модельного средства.

МАТЕРИАЛЫ И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ

Исследовался образец синтетического моющего средства, состав которого представлен в таблице1. Порядок смешения веществ указан цифрами.

Приготовление испытуемого раствора

Навеску синтетического моющего средства добавляют в мерный стакан, растворяют в 50-60 см 3 воды, перемешивают до полного растворения. Растворение порошкообразных и пастообразных средств осуществлялась при нагревании до $(60\pm5)^{\rm O}$ С. Полученный раствор доводился водой до 100 см 3 водой и перемешивают, избегая пенообразования. Конечный вариант смеси представлен в таблице 1

Приготовление раствора проводят при температуре испытания с допускаемым отклонением

 ± 5 $^{\rm O}$ С. Для каждого опыта готовится не менее 200 мл раствора. Раствор готовится не позднее чем за 30 мин и не ранее чем за 2 ч до испытания

ПАВ представлен смесью- катионного и неиногенного ПАВов.

Для анализа качества образование пены и качества очистительных свойств получаемого раствора были отобраны образцы воды (таблица 2).

Таблица 1.

Состав моющего средства

Компонент	Количество, см ³	
1. Вода	78	
2. Соляная кислота	2	
3. Этиленгликоль	6	
4. Силикат натрия	3	
5. Комплексон(Трилон-Б)	3	
6. ПАВ	8	

Таблица 2.

Вода, используемая в экспериментальном исследовании

Пробы воды	Жесткость, мг-экв.
Дистиллированной	0
проточной воды	5
Проточной воды с применением термоумягчения	3.5
Проточной воды с применением реагентного умягчения (Na ₂ SiO ₃)	4
Проточной воды с добавлением Ca(HCO ₃) ₂ с целью повышения	7
временной жесткости воды	
Проточной воды с добавлением CaCl ₂ , с целью повышения постоянной	8
жесткости	

Приготовление разных проб вод производился по схеме:

- 1. Добавление навески вещества массой $0.194~\mathrm{r}$ (в пересчете на безводные соли), взятые с погрешностью не более $0.0002~\mathrm{r}$
- 2. Растворение в воде (с начальной жесткостью 5 мг-экв.) в мерной колбе вместимостью 1000 cm^3
- 3. Доведение до объёма раствора до метки тщательно перемешивая

В соответствии с поставленной целью при выполнении работы решалась задача: анализа качества пенообразования раствора - в соответствии с ГОСТ 22567.1-77.

Проведение испытания

Пенообразующая способность определялась на приборе Росс-Майлса при температуре 37 ± 2 $^{\circ}$ C.

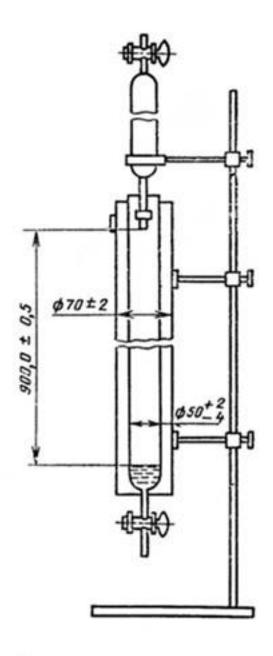


Рисунок 1. Прибор Росс-Майлса

Порядок проведения эксперимента

300 мл раствора испытуемого средства доводят до температуры испытания. Из этого количества берут 50 мл раствора, наливают в мерный цилиндр по стенке так, чтобы не образовалась пена. Через 10 мин с помощью резиновой груши или насоса вводят пипетку в испытуемый раствор в объёме 200 мл так, чтобы не образовалась пена. Пипетку с раствором закрепляют в штативе так, чтобы её выходное отверстие находилось на расстоянии 900 мм от уровня жидкости в цилиндре и обеспечивало попадание струи в центре жидкости. Затем открывает кран пипетки. По истечению раствора из пипетки включают секундомер и измеряют высоту образовавшегося столба пены в миллиметрах. Затем через 5 мин, измеряют высоту образовавшегося столба пены в миллиметрах.

РЕЗУЛЬТАТУ И ОБСУЖДЕНИЯ

Таблица 3.

Качество образования пены

Проба воды	Высота образуемой пены, мм d ₁	Высота образо пены через 5 х	
	450	мм d ₂	
Дистиллированная	170	143	
Проточная вода	180	165	
проточная вода	100	103	
Проточной воды с применением термоумягчения	175	161	
Проточной воды с применением реагентного	155	138	
умягчения			
Проточной воды с добавлением Ca(HCO ₃) ₂	158	136	
Проточной воды с добавлением CaCl ₂	150	129	

Анализ образцов моющих средств на основе воды различной жесткости по высоте образуемой пены проводился относительно средства на основе дистиллированной воды. У образцов на основе проточной воды и проточной воды с применением термоумягчения – первичная высота пены больше на 10 и 5 мм соответственно. У остальных образцов высота пены оказалась ниже. При добавлении к проточной воде Na_2SiO_3 исследуемый показатель уменьшился на15мм. При искусственном повышении жесткости с помощью $Ca(HCO_3)_2$ и $CaCl_2$ высота пены уменьшилась на 12 и 20 мм соответственно.

Согласно представленным данным Наилучшие пенообразующие свойства раствор проявляет в проточной воде с жесткостью в пределах 4-5 мг-экв. (средняя жесткость). При уменьшении или увеличении жесткости качества пены и чистящие свойства ухудшаются.

выводы

Из результатов проделанного исследования следует, что качество синтетического моющего средства напрямую зависит от жесткости воды. На основе проточной воды, с жесткостью в пределах от 3–5 мг-экв, получаются синтетические моющие средства, обладающие лучшим пенообразованием.

Список литературы:

- 1. Абрамзон А.А., Гаевой Г.М. (ред.) Поверхностно-активные вещества. Л.: Химия, 1979. 376 с.
- 2. Физико-химические основы применения поверхностно-активных веществ, Ташкент, 1977. [Электронный ресурс] Режим доступа. URL: http://www.chemport.ru/data/chemipedia/article 6226.html (Дата обращения 14.11.2016).
- 3. Плетнев М.Ю. (ред.) Поверхностно-активные вещества и композиции. Справочник. М.: ИД «Косметика и медицина», 2002. 752 с.

- 4. Коллоидные поверхностно-активные вещества, пер. с англ. под ред. А.Б. Таубмана, З.Н. Маркиной, М., 1966. [Электронный ресурс] Режим доступа. URL: http://www.chemport.ru/data/chemipedia/article_6226.html (Дата обращения 10.11.2016).
- 5. Поверхностно-активные вещества. Справочник, под ред. А.А. Абрамзона и Г.М. Паевого, Л., 1979. [Электронный ресурс] Режим доступа http://www.chemport.ru/data/chemipedia/article_6226.html (Дата обращения 14.11.2016).