DOPYM

nauchforum.ru

c.[. HAYYHbIN Hayunsiit xxypHan «CtygeHdeckui popym» BrIIIyCK Ne23(290)
53

SECURITY OF FRONT-END APPLICATIONS: THREATS AND METHODS OF PROTECTION
Maslov Andrey

Bachelor, Tomsk Polytechnic University, Russia, Tomsk

Abstract. This article examines vulnerabilities in the client side of web applications, substantiates
their causes and suggests methods of protection and prevention. With the development of
digitalization, user data is becoming increasingly vulnerable to various types of attacks, which
makes the topic of security especially relevant.

Keywords: Web, protect, threats, attack.

Introduction

In recent years, web applications have become increasingly complex and interactive, leading to an
increase in potential entry points for attackers. The importance of ensuring the security of user
data cannot be overestimated, as data leakage or compromise can lead to serious consequences for
both users and companies.

So, the book The Web Application Hacker's Handbook [2] describes the exploitation of
vulnerabilities that we will consider in this article.

Table 1.
The main threats
Type of threats Short description
Cross-site Scripting (XSS) vulnerability of web applications that allows the introduction
malicious scripts in the user's browser

Cross-site Request Forgery (CSRF) vulnerability in which an attacker forces a user to perform u

on a trusted site on which he is logged in

Data leakage via JavaScript vulnerability in which confidential information is inadverte

through scripts
Attacks through library and framework attacks in which attackers exploit weaknesses in third-par
vulnerabilities frameworks used in an application to gain unauthorized acc
system
Clickjacking an attack in which attackers hide malicious interface eleme
ones, forcing users to accidentally click on them and perform

Cross-site scripting (XSS)

Cross-site scripting (XSS) is a vulnerability in which attackers inject malicious code into the pages
of a web application, allowing them to execute arbitrary scripts in the context of the user. This
vulnerability can lead to identity theft, hijacking of sessions, redirection of users to phishing sites
and other types of attacks. To protect against XSS, it is critically important to apply validation and

Maslov A. SECURITY OF FRONT-END APPLICATIONS: THREATS AND METHODS OF PROTECTION // CmydeHuecKkul
¢PopyMm: 31eKMpOoH. Hay4H. HcYypH. 2024. Ne 23(290). URL: https://nauchforum.ru/journal/stud/290/151171 (dama obpauieHus:
09.09.2025).



data entry screening, as well as use the Content Security Policy (CSP).

Validation of data entry is the first and most important step in protecting against XSS. It involves
checking all incoming data to make sure that they match the expected values.

e Server and client validation: Always perform validation both on the client side (in the
browser) and on the server side. Client validation helps prevent the user from sending
incorrect data, but it cannot be relied on completely, since an attacker can bypass it by
sending requests directly to the server. Server-side validation is necessary to ensure
application-level security.

e Using whitelists: The use of whitelists is preferable before blacklists. The whitelist defines a
set of acceptable values, while the blacklist tries to exclude malicious data, which may be
less effective due to the possibility of missing some dangerous values.

e Data Type Checking: Make sure that the input data matches the expected types. For
example, if the field should contain a number, make sure that the user entered the number,
and not a line of text or HTML code.

e Data Length limit: Set limits on the length of input data to prevent buffer overflows and
other potential attacks.

Data escaping is the process of replacing special characters (e.g. spaces, quotes) in data with their
equivalents before displaying them in the browser.

Create and configure a content security policy for your web application. This can be done by adding
the Content-Security-Policy header to the HTTP response. Content Security Policy (CSP) is a
powerful mechanism that allows developers to control the resources that can be downloaded and
executed on a web page. CSP helps prevent XSS by limiting the ability to execute unintended
scripts.

Cross-site Request Forgery (CSRF)

CSREF (Cross-Site Request Forgery) is an attack in which an attacker fraudulently forces a user to
perform an undesirable action on a site on which he is authenticated. This can lead to undesirable
operations, such as changing the password, transferring money, or deleting the account. Various
methods are used to protect against CSRF, such as using CSRF tokens, checking the referrer, and
applying the SameSite attribute to cookies.

CSRF tokens are unique, random values that are generated by the server and included in forms and
requests. They help to make sure that the request comes from the user, and not from an attacker.

e Token generation: During each user session, the server generates a unique CSRF token and
stores it in the user's session. This token is also included in every form or request that
requires authentication.

e Token validation: When the server receives a request, it verifies the presence and
correctness of the CSRF token. If the token is missing or does not match the token stored in
the session, the request is rejected.

e Token Shielding: To prevent XSS attacks, CSRF tokens must be shielded before being
inserted into HTML. For example, using functions to escape HTML characters (&, <, >, ", ")
when inserting the token into the form.

Referrer Verification - checks the Referer (or Origin) header in requests to verify that requests
originate from trusted pages.

e Comparing the referrer with acceptable values: The server verifies that the Referer or
Origin header matches the expected domain. If the header value does not match, the
request is rejected.

e Problems with Referrer: It is important to keep in mind that some browsers and proxy
servers may not send the Referrer header, so referrer verification should be used in
combination with other security methods.

Applying the SameSite attribute to cookies: The SameSite attribute for cookies helps to limit the



transmission of cookies only within the same site, which prevents their use on other sites.

¢ Configuring the SameSite attribute: Set the SameSite attribute for all cookies used for
authentication. The Strict value prohibits sending cookies for any cross-site request, and
Las allows sending cookies for some secure requests (for example, GET requests).

Data leakage via JavaScript: Protection methods

Data leakage through JavaScript can become a serious security threat to web applications.
Insufficient protection of data transmitted through JavaScript can lead to their compromise, which,
in turn, can allow attackers to gain access to confidential information, intercept sessions, carry out
phishing attacks and much more. To prevent such leaks, it is necessary to apply a comprehensive
approach to data protection. Let's look at the main methods of protection: minimizing the use of
sensitive data in JavaScript, data encryption and strict CORS policy.

Minimizing the use of sensitive data in JavaScript:

e Separation of data and logic: Store as little sensitive data as possible in JavaScript code. If
possible, transfer the processing of sensitive data to the server side. This will reduce the
likelihood of information leakage, since the server code is not directly accessible to users.

e Using tokens instead of data: Instead of transmitting sensitive data, use tokens that
represent this data. Tokens can be short-lived and disposable, which reduces the risk of
their compromise.

e Access Control: Restrict access to data in JavaScript using strict authentication and
authorization mechanisms. Make sure that only authorized users can access sensitive
information.

Data encryption:

e Transport encryption: Use HTTPS to encrypt data transmitted between the client and the
server. This prevents hackers from intercepting data during transmission.

e Client-side encryption: In some cases, it makes sense to encrypt data directly in the user's
browser before sending it to the server. Encryption standards such as AES can be used for
this.

e Storing encrypted data: If you need to store data in the browser's local storage (for
example, localStorage or sessionStorage), make sure that the data is encrypted before
saving.

CORS:

¢ Configuring CORS on the server: Make sure that the server is configured to accept requests
only from trusted domains. This can be done by configuring CORS (Cross-Origin Resource
Sharing) headers.

e Restriction of methods and headers: Set restrictions on HTTP methods (GET, POST, etc.)
and headers that can be used for cross-domain requests.

Attacks through vulnerabilities of libraries and frameworks: Methods of protection

Using outdated or vulnerable libraries and frameworks in web applications can open the way for
various attacks, which poses a significant security threat. Vulnerabilities in third-party components
can lead to data leakage, unauthorized access, arbitrary code execution, and other critical
consequences. Let's look at the main methods of protection against such attacks: regular updates of
dependencies and the use of vulnerability scanning tools.

Regular dependency updates: Make sure that the libraries and frameworks you use are always
updated to the latest stable versions. Regular updates reduce the likelihood of exploiting
vulnerabilities that have been fixed in newer versions.

Using vulnerability scanning tools: Use vulnerability scanning tools such as Snik, Dependabot,
White Source or others during the development and build of the application. These tools analyze



dependencies and report vulnerabilities found.

Additional security measures: Use virtual environments or containers to isolate dependencies and
prevent conflicts between them. It also helps to limit the impact of vulnerabilities in one component
on the entire system. Provide regular training to developers on security issues and best practices
for dependency management. This will help them keep up to date with new vulnerabilities and ways
to prevent them.

Clickjacking

Clickjacking is an attack in which attackers inject malicious elements into the website interface,
deceiving users and forcing them to perform undesirable actions. These actions may include
clicking on hidden buttons, filling out forms, or other interactions that the user is not aware of.
Methods such as the use of X-Frame-Options headers and Content Security Policy (CSP) are used to
protect against clickjacking.

Using X-Frame-Options: The HTTP X-Frame-Options header allows developers to control how
browsers should handle the inclusion of their pages in <iframe> tags. This helps prevent
clickjacking attacks by preventing pages from loading on your site in frames of other sites.

Table 2.

X-Frame-Options value

X-Frame-Options value Description

DENY This parameter completely prevents the pa
into the <iframe>
SAMEORIGIN This option allows you to load a page in <ifr
requested from the same dom
ALLOW-FROM <URI> This option allows you to load the page in t
from the specified URL. This option is less c

supported by all browsers.

Conclusion: According to an article from OWASP [3], new attack methods appear every year,
which requires constant improvement of protection mechanisms. Web security is an essential
aspect of modern web application development, and understanding various types of attacks such as
XSS, CSRF, data leakage through JavaScript, attacks through vulnerabilities in libraries and
frameworks, as well as clickjacking, is the key to creating reliable and secure systems. A
comprehensive approach to protecting web applications, including regular updates, the use of
modern security tools and careful attention to every aspect of user interaction with the application,
is the basis for creating a safe and reliable environment. It is important to remember that security
is a process, not a one - time event, and continuous improvement and adaptation to new threats
plays a crucial role in ensuring the protection of web applications.

References:

1. Hoffman, A. (2020). Web Application Security: Exploits and Countermeasures for Modern Web
Applications.

2. Stuttard, D., & Pinto, M. (2011). The Web Application Hacker's Handbook: Finding and
Exploiting Security Flaws.

3. OWASP Foundation. (2021). OWASP Top Ten Web Application Security Risks - 2021. Retrieved
from https://owasp.org/Top10/


http://www.tcpdf.org

