

МЕТОДЫ ПОВЕРХНОСТНОГО УПЛОТНЕНИЯ ГРУНТОВ

Рустамов Акбар Музаффарович

студент, Ташкентский государственный транспортный университет, Узбекистан, г. Ташкент

Пурцеладзе Ирина Борисовна

научный руководитель, старший преподаватель, кафедры Инженерия железных дорог, Ташкентский государственный транспортный университет, Узбекистан, г. Ташкент

Аннотация. В данной статье рассмотрены методы поверхностного уплотнения сильно сжимаемых и мало прочных грунтов основания фундаментов. Приведены различные способы укрепления грунта с учетом области применения каждого метода.

Ключевые слова: грунты, лёссы, макропористые трехфазные грунты, уплотнения, виброкаток, пневмокаток.

При строительстве на сильно сжимаемых и мало прочных грунтах, когда возведение фундаментов мелкого заложения на естественном основании становится нерациональным, такие грунты укрепляют или устраивают фундаменты глубокого заложения, передающие нагрузки на нижележащие прочные и мало сжимаемые грунты.

Укреплять основания можно путем уплотнения грунтов, закрепления их различными инъекционными методами, а также с использованием постоянного электрического тока и термическим способом.

Для укрепления глинистых неводонасыщенных (так называемых трехфазных) грунтов используется методы поверхностного уплотнения. Макропористые трехфазные грунты, обладающие повышенной водо- и газопроницаемостью (лёссы и лёссовидные грунты), можно укрепить на значительную глубину не только уплотнением, но и инъекционными методами и обжигом.

Способ укрепления грунта выбирают путем сравнения вариантов по технико-экономическим показателям с учетом области применения каждого метода.

Уплотнить глинистые трехфазные грунты на глубину до 0,5...0,6 м можно с помощью пневмокатков, которые широко применяют в дорожном строительстве для послойного уплотнения возводимых из грунтов насыпей, дамб и т.д.

Несвязные грунты хорошо уплотняются передвижными виброплитами на глубину 0,5...0,8 м и виброкатками на глубину до 1 м. Связные и несвязные грунты можно уплотнять гружеными автомашинами на глубину 0,4...0,7 м. Имеются трамбующие машины, обеспечивающие большую глубину уплотнения (до 1,2 м). Из-за небольшой глубины уплотняемой зоны для укрепления оснований фундаментов эти методы малопригодны. Из методов поверхностного уплотнения грунтов при устройстве оснований наиболее распространен метод уплотнения с помощью тяжелых трамбовок массой 2,5...15 т и диаметром 1,2...3,5 м, подвешиваемых к стрелам кранов-экскаваторов и сбрасываемых с высоты 3,5...10 м. При этом грунт уплотняется

на глубину $h_y = 2...8$ м. Этот метод применяют для уплотнения глинистых и песчаных грунтов, имеющих степень влажности $S_r \le 0.75$.

Поверхностное уплотнение широко используют для устранения посадочных свойств лёссовидных грунтов.

Трамбовки имеют в плане обычно круглую форму и изготовляются из железобетона. Применяют и сборные трамбовки из пакетов стальных листов, что позволяет менять их массу. Грузоподъемность кран-экскаватора для обеспечения нормальной работы должна в 3...4 раза превышать массу трамбовки.

Уплотняют грунты участками. Число ударов трамбовки принимают из условия уплотнения грунта до «отказа». Отказ соответствует тому числу ударов, начиная с которого приращения понижения трамбуемой поверхности т каждого удара происходит на одно и то же значение (рис. 1). Его уточняют на месте опытным трамбованием. Для достижения требуемого уплотнения грунта обычно бывает необходимо от 8 до 16 ударов трамбовки по одному месту.

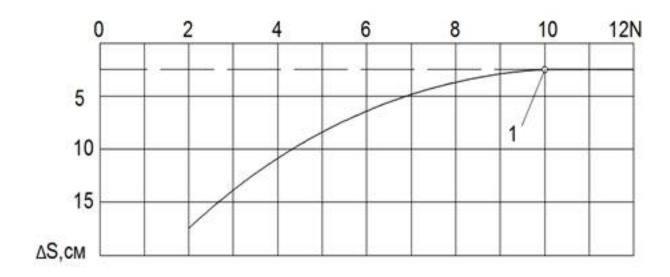


Рисунок 1. Зависимость приращения осадки трамбуемой поверхности от числа ударов: 1- точка уплотнения «до отказа».

Котлован, дно которого подвергается поверхностному уплотнению, разрабатывают с недобором на величину понижения поверхности, которую устанавливают опытным трамбованием. По окончании основного процесса уплотнения основного процесса уплотнения основания разрыхленный при трамбовании верхний слой доуплотняют легкими ударами рамбовки, сбрасываемой с высоты 0,5...1 м. При больших площадях трамбуемой поверхности для этой цели применяют катки.

Уплотнять грунты трамбованием следует при их оптимальной влажности w_o . Если естественная влажность грунта w меньше оптимальной, то перед трамбованием котлован замачивают. Необходимое количество заливаемой воды в m^3 на $1~m^2$ площади котлована определяют по формуле:

$$G_{w} = (w_{o} - w)\rho_{s}h_{v}/[(1+e)\rho_{w}],$$
 (1)

где:

 ho_s – плотность частиц грунта;

е - коэффициент пористости грунта до уплотнения.

Трамбованием добиваются плотности грунта основания, соответствующей коэффициенту уплотнения $k_y \ge 0.95$. Просадочные грунты уплотняют до состояния, при котором полностью устраняются их просадочные свойства.

Известно применение очень тяжелых трамбовок массой 10...200 т, сбрасываемых с высоты 20...40 м, для работы которых использовали специальные краны и копры. Таким оборудованием уплотняли насыпные грунты, рыхлые пески и глины на глубину 6...35 м.

Глубину уплотнения грунта сверхтяжелыми трамбовками определяют по формуле, полученной на основе экспериментальных полевых исследований.

$$h_y = m_y \sqrt{\mathbf{M}h}$$
 (2)

где:

 $m_{\rm y}$ - коэффициент, зависящий от свойств уплотняемого грунта, значения которого изменяются от 0,5 до 1 (м/т) $^{1/2}$;

М- масса трамбовки, т;

Н - высота падения, м.

Опыт применения этого способа показал, что при трамбовании в несколько этапов с перерывами между ними сверхтяжелыми трамбовками возможно уплотнять не только трехфазные, но и водонасыщенные глинистые грунты.

К поверхностным уплотнения грунтов относится, метод вытрамбовывания котлованов, заключающийся в сбрасывании в одно и то же место с высоты 4...8 м трамбовки массой 1,5...10 т, имеющей форму котлован такой же формы. При этом грунт ниже котлована и вокруг него уплотняется. Фундамент бетонируют враспор со стенками котлована. Благодаря плотному прилеганию фундамента не только ко дну котлована, но и к уплотненному грунту его откосов в расчете такого фундамента в отличие от фундамента, возводимого в предварительно открытом котловане с обратной засыпкой пазух, учитывают работу грунта у его боковой поверхности. Несущая способность фундамента возрастает (главным образом) и за счет уплотнения грунта.

Фундаменты и вытрамбованных котлованах устраивают с плоской или клиновидной подошвой неглубокого заложения (до 1,5 м) или удлиненной формы (глубиной заложения до 4 м) с заострением на конце, ниже которого создают уширение из втрамбованного щебня. Фундаменты в вытрамбованных котлованах имеют форму, расширяющуюся вверх, с наибольшим сечением у обреза. Их применяют под несущие малонагруженные конструкции промышленных, гражданских и сельскохозяйственных зданий в непучинистых грунтах, способных уплотняться при вытрамбовывании котлованов. В глинистых водоносыщенных слабых грунтах они не эффективны, поскольку такие грунты плохо уплотняются и подвержены морозному пучению.

Список литературы:

- 1. Г.Г. Болдырев М.В. Малышев. «Механика грунтов. Основания и фундаменты» учеб. пособие Пенза: ПГУАС, 2009.
- 2. Б.И. Далматов. «Механика грунтов, основания и фундаменты» Л., 1988.
- 3. Kakharov, Z., Mirzakhidova, O. (2023). Soil Surface Compaction Analysis During the Construction of Railways and Roads. AFE 2023. Lecture Notes in Networks and Systems, vol 706. Springer, Cham.

- 4. Kakharov Z. Mechanisms of the processes of shear, slice, general compression and expansion of mass //E3S Web of Conferences. EDP Sciences, 2023. T. 402. C. 12007.
- 5. Кахаров 3. В. Железнодорожная конструкция для высокоскоростных дорог // Universum: технические науки. 2022. №. 5-4 (98). С. 43-45.
- 6. Кахаров З. В., Пурцеладзе И. Б. Сырьевые материалы, применяемые при производстве цемента //Вестник науки. 2023. Т. 3. №. 1 (58).
- 7. Кахаров З. В., Пурцеладзе И. Б. Проблемы экономии энергоресурсов в строительстве //Инновационные научные исследования. 2022. №. 11-5.
- 8. Кахаров 3. В. Земляные работы при возведении земляного полотна железных дорог //Вопросы технических наук в свете современных исследований. 2017. С. 39-43.
- 9. Кахаров 3. В. Анализ поверхностного уплотнение грунтов земляного полотно железных дорог вальцовыми катками // The Scientific Heritage. 2020. №. 47-1 (47). С. 50-52.
- 10. Кахаров З. В. и др. Требование к верхному строения пути на высокоскоростных железнодорожных путях //Евразийский союз ученых. 2021. №. 4-1. С. 45-48.
- 11. Кахаров З. В. Взаимодействие рабочих органов машин с перерабатываемыми материалами // Технические науки: проблемы и решения. 2018. С. 104-108.
- 12. Кахаров З. В., Эшонов Ф. Ф. Изменение состава веществ (материалов) в производстве //Научный журнал. 2019. №. 3 (37). С. 22-23.
- 13. Кахаров З. В., Кодиров Н. Б. Методы укрепления оснований здании и сооружения //Системная трансформация-основа устойчивого инновационного развития. 2021. С. 18-37.
- 14. Кахаров З. В., Кодиров Н. Б. Механизм процессов общего сжатия и расширения массы //Моя профессиональная карьера. 2023. Т. 1.– №. 44.
- 15. Кахаров З. В., Пурцеладзе И. Б. Ударный метод погружения свай //Universum: технические науки. 2024. Т. 3. №. 5 (122). С. 49-52.
- 16. Пурцеладзе И. Б., Мирзахидова О. М. Производства земляных работ при устройстве фундаментов //Инновационные научные исследования. 2022. №. 12-2. С. 24.
- 17. Пурцеладзе И. Б., Хальфин Г. А. Р. Инновационные технологии для промышленных зданий //Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy jurnali. 2022. С. 556-558.
- 18. Хальфин Г. А. Р., Пурцеладзе И. Б. Обоснование необходимости и целесообразности укладки сверхдлинных плетей на ао" Узбекистон темир йуллари //UNIVERSUM. С. 23-25.
- 19. Хальфин Г. А. Р., Пурцеладзе И. Б. Напряженно-деформированное состояние двухслойного материала //Universum: технические науки. 2023. №. 4-3 (109). С. 17-20.
- 20. Н.А. Цытович. «Механика грунтов». М.: ЛКИ, 2008.