

РОЛЬ ЛАБОРАТОРИИ ПРИ ПОДГОТОВКЕ К ГИА ПО ХИМИИ

Осипов Александр Алексеевич

магистрант, Оренбургский государственный университет, РФ, г. Оренбург

Юдин Александр Андреевич

студент, Оренбургский государственный университет, РФ, г. Оренбург

Вареников Александр Сергеевич

студент, Оренбургский государственный университет, РФ, г. Оренбург

Осипова Елена Александровна

научный руководитель, старший преподаватель кафедры химии, Оренбургский государственный университет, РФ, г. Оренбург

Одной из основных проблем выпускников сегодняшних школ является подготовка к сдаче единого государственного экзамена (ЕГЭ-11 класс) и основного государственного экзамена (ОГЭ-9 класс) или государственной итоговой аттестации (ГИА). ЕГЭ и ГИА по своей сути являются проверкой знаний у учащихся в современном мире и к ней нужно быть готовым еще и психологически.

Важным моментом при подготовке к сдаче любого экзамена является самостоятельная подготовка. Самостоятельная работа – это способность реализовывать и организовывать деятельность без постороннего руководства и помощи [1]. Во время самоподготовки у учащегося зарождается познавательная активность, происходит формирование умений и навыков, необходимых для более успешного решения заданий контрольно-измерительных материалов. Хорошо проявляется интерес к творческой работе и, в конечном итоге, способность к решению задач не только ГИА, но и олимпиадного уровня.

Для организации самостоятельной подготовки необходимо создать комфортные психологодидактические условия, характеризующиеся высокой активностью и самостоятельностью учащихся вне стен образовательного учреждения.

Важной особенностью государственной итоговой аттестации в форме основного государственного экзамена (ОГЭ) по химии является наличие части заданий высокого уровня сложности с развернутым ответом. При выполнении таких заданий выпускникам предлагается не только сформулировать ответ, но и подробно описать весь ход решения. В первой экзаменационной модели экзамена таких заданий 3; за выполнение этой части выпускник может получить до 32,4% максимальных первичных баллов. Задания этой части проверяют усвоение учащимися следующих элементов: способы получения и химические свойства различных классов неорганических соединений, реакции ионного обмена, окислительно-восстановительные реакции, взаимосвязь веществ различных классов, количество вещества, молярный объем и молярная масса вещества, массовая доля растворенного вещества [2].

Третье задание (22(C3)) в части с развернутым ответом практико-ориентировано и имеет характер «мысленного эксперимента». Оно направлено на проверку умения у учащегося спланировать эксперимент на основе предложенных веществ, описать признаки протекания

химических реакций, составить молекулярные и ионные (полные и сокращенные) уравнения протекающих реакций. Это задание традиционно вызывает затруднения при выполнении, так как требует учитывать особенности проведения эксперимента, агрегатных состояний веществ, правильной интерпретации визуальных эффектов реакций.

Подготовка к решению этого задания предполагает изучение материала, содержащего описания проведения опытов, подтверждающих свойства химических соединений, их получению и собиранию, а также практическое осуществление лабораторных манипуляций. Собственно само изучение химии начинается обычно с проведения опытов, любая теория должна подкрепляться и проверяться экспериментом, химическим опытом.

Образовательной программой предусмотрен ряд лабораторных работ, однако они полностью не охватывают всех особенностей вышеуказанных заданий ГИА. Химический практикум может быть организован в школьных лабораториях и во внеурочное время, под присмотром учителя (химические кружки, химические вечера).

К сожалению, осуществление лабораторной деятельности возможно не во всех школах, поэтому многие учащиеся, увлекающиеся химией ставят эксперименты в самостоятельно собранной домашней лаборатории. Однако не каждый ученик догадывается о том, что дома можно сделать лабораторию, подсказкой к действию могут быть книги О.М. Ольгина «Химия без взрывов», Э. Гроссе «Химия для любознательных», В.Н. Верховского «Техника и методика химического эксперимента», И.Н. Черткова «Самодельные демонстрационные приборы по химии». Источником полезной информации может послужить и сеть Интернет, нелишними будут продаваемые наборы «Юный химик» и книги с описаниями опытов к этим наборам, которые можно взять в библиотеке.

Список веществ и оборудования, представленный в спецификации КИМ ОГЭ по химии [2] не представляет опасности для проведения экспериментов в домашних условиях, большинство веществ можно взять из аптеки, хозяйственного магазина; практически все они широко применяются в быту. Безопасность обустройства домашней лаборатории достаточно полно описывается О.М. Ольгиным [3]. Кроме того, здесь представлены и правила техники безопасности при работе с химическими веществами, что помогает при выполнении задания 13(А13).

Самостоятельная сборка и обустройство домашней лаборатории является проявлением творческой деятельности; проводимые эксперименты закрепляют знания учащихся о веществах и их свойствах, получении и применении их в быту, так как большая часть реактивов домашней лаборатории в основном приготовляется из окружающих учащегося веществ. Четко формируется представление о том, как идет реакция, при каких условиях, что получается в результате.

Успешное проведение эксперимента способствует развитию познавательной активности; ведение лабораторного журнала помогает систематизировать усвоенные знания. Кроме того, лабораторный журнал может служить опорным конспектом учащегося при подготовке к решению задания 22(СЗ). Из минимального набора реактивов, представленного федеральным институтом педагогических измерений, учащийся может самостоятельно скомбинировать ряд химических превращений, проследить признаки химических реакций, увидеть различие между результатом эксперимента в зависимости от того, в каком агрегатном состоянии берется исходное вещество. Также можно провести не «мысленный», а реальный эксперимент к заданиям, представленным в демонстрационных вариантах или открытом банке заданий.

Таким образом, обустройство домашней химической лаборатории является своеобразной формой творческой деятельности учащихся. Также домашняя лаборатория способствует глубокому пониманию задач и опытов, и как следствие, успешной сдаче не только государственной итоговой аттестации, но и единого государственного экзамена, удачному выступлению на муниципальном и региональном этапах Всероссийской олимпиады школьников, так как большинство задач олимпиадного уровня предполагают знание вышеуказанных свойств веществ и проведение экспериментального тура.

Список литературы:

- 1. Гарунов М.Г. Самостоятельная работа студентов. Москва: Знание, 1998. С. 7-8.
- 2. Спецификация контрольных измерительных материалов для проведения в 2017 году основного государственного экзамена по химии. Федеральное государственное бюджетное научное учреждение «Федеральный институт педагогических измерений», 2016. 16 с.
- 3. Ольгин О.М. Опыты без взрывов. Москва: Химия, 1995. 176 с.