

ПОЛУЧЕНИЕ ЖИДКОГО ЭКСТРАКТА ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ МОЛОЧАЙ ПРИЗЕМИСТОГО (EUPHORBIA HUMIFUSA WILLD.) МЕТОДОМ ПЕРКОЛЯЦИИ

Абдреева Балауса Каныйкызы

студент, НАО Казахский национальный медицинский университет им. С.Д. Асфендиярова, Казахстан, г. Алматы

Ерденбай Анар Нурмухамедкызы

научный руководитель, магистр, НАО Казахский национальный медицинский университет им. С.Д. Асфендиярова, Казахстан, г. Алматы

Аннотация. Использование лекарственных препаратов на растительной основе в целях улучшения здравоохранения и благосостояния населения является актуальным. Эти препараты состоят из растительных компонентов, обогащённых биологически активными соединениями. Растение молочай приземистого (Euphorbia humifusa Willd.) широко используется в народной медицине для лечения различных заболеваний. Его полезные свойства, такие как противовоспалительное действие, антиоксидантный эффект, укрепление иммунитета и снижение артериального давления, обусловлены богатым содержанием биологически активных веществ. В связи с этим важно получить экстракт, соответствующий фармакопейным требованиям, с использованием эффективных методов экстракции из растительного сырья стелющегося молочая, произрастающего на территории нашей страны.

В данной научной статье рассматривается технология получения жидкого экстракта из растительного сырья молочая приземистого (Euphorbia humifusa Willd.) методом перколяции.

Актуальность. Богатая флора Казахстана стимулирует исследования, направленные на поиск лекарственных растений, а рациональное использование и сохранение растительных ресурсов относится к числу приоритетных межгосударственных задач. Богатые запасы лекарственных растений в Казахстане определяют необходимость создания современных эффективных и безопасных фитопрепаратов и рассматриваются как один из основных путей развития отечественной фармацевтической промышленности.

Среди растений, потенциально пригодных для применения в фармацевтической практике, особое внимание привлекает лекарственное растение из семейства молочайных — молочай приземистый (Euphorbia humifusa Willd.), благодаря высокому содержанию различных биологически активных веществ. Казахские растительные виды требуют проведения фитохимических и технологических исследований. В связи с этим актуальной задачей является получение экстракта из надземной части молочая приземистого (Euphorbia humifusa Willd.) с целью поиска потенциальных источников биологически активных соединений.

Ключевые слова: Euphorbia humifusa Willd., лекарственное растительное сырьё, экстракт, перколяция.

Основные результаты. Перколяция — это традиционный метод извлечения биологически активных веществ из растительного сырья с помощью жидкого экстрагента (например, спирта, воды или их смеси). Этот метод широко применяется в фармацевтике, косметологии и

пищевой промышленности. Процесс перколяции начинается с подготовки сырья и продолжается до получения экстракта в виде готового продукта. Молочай приземистый (Euphorbia humifusa Willd.) — однолетнее растение, относящееся к семейству Euphorbiaceae. Распространён от Кавказа до западных регионов Азии. Растение содержит множество ценных химических соединений. Euphorbia humifusa на протяжении тысяч лет используется в народной медицине для лечения гепатита, бактериальной дизентерии, а также бородавок на коже [1].

Фитохимические исследования показали, что в составе Euphorbia humifusa Willd присутствуют фенолы, флавоны, алкалоиды и тритерпены, некоторые из которых обладают широким спектром фармакологических свойств, включая антиоксидантное, гиполипидемическое и гипогликемическое действие [6]. Полезные эффекты Euphorbia humifusa Willd, такие как противовоспалительное, антиоксидантное действие, укрепление иммунитета и снижение артериального давления, могут быть в значительной степени связаны с высоким содержанием флавоноидов [7]. Предыдущие фитохимические исследования Euphorbia humifusa Willd позволили выделить различные биологически активные соединения, включая метиловый эфир дегидроэуфорбиновой кислоты, флавоновые гликозиды, апигениновые гликозиды, танины, αпирролидиноны, ланостан-тритерпеноиды, все из которых обладают различными фармакологическими свойствами, включая противогрибковое, противовоспалительное, вазодилататорное и противовирусное действие [29].

Метод экстракции В качестве объекта исследования использовались надземные части травы молочай приземистый (*Euphorbia humifusa Willd.*), собранной в дикой природе. В результате товарной экспертизы было установлено, что сырьё соответствует требованиям Государственной фармакопеи XIV издания [6].

Экстракты получали методом перколяции при температуре 20±2 °C. В качестве экстрагента использовались очищенная вода и этаноловые растворы с концентрацией 40-90 %. Соотношение сырья и экстрагента составляло 1:10 (по массе). 10 г растительного сырья помещали в перколятор и заливали 100 см³ экстрагента. Процесс настаивания осуществлялся в течение 24 часов. Затем проводили перколяцию путём непрерывной подачи экстрагента со скоростью 1 мл/мин. Экстракцию продолжали до полного выделения экстрактивных веществ.

Полученные экстракты фильтровали через бумажный фильтр в сухую колбу объёмом 150-200 см³. 25 см³ фильтрата с помощью пипетки переносили в заранее высушенную до постоянной массы и точно взвешенную фарфоровую чашку. Раствор выпаривали на водяной бане, остаток сушили при температуре 100-105 °C, охлаждали в эксикаторе в течение 30 минут и сразу взвешивали.

Содержание экстрактивных веществ в пересчёте на абсолютно сухое сырьё рассчитывали по формуле 1:

$$X = \frac{m \times 200}{m1 \times (100 - W)} \tag{1}$$

Здесь:

m - масса сухого вещества, г;

m1 - масса сырья, г;

W - потеря массы при сушке сырья, %; m1 = 1,0 г.

Потерю массы сырья при сушке (W) рассчитывают по формуле 2:

$$W = \frac{m - m1}{m} \times 100 \tag{2}$$

Здесь:

т - масса сырья до сушки, г;

m₁ - масса сырья после сушки, г.

Экстракция проводилась трижды.

Статистическая обработка результатов проводилась с использованием коэффициента Стьюдента. Доверительный интервал – 0,95.

Таблица 1.

Параметры производства экстракта

Разделы	№1-образец Перколяция 70%	№2-обр Перколяц
Сырьё: соотношение экстрагента	1:1	1:1 15-20° 48 ч 50,0
Температура, С	15-20°C	
Время экстракции, ч	48 ч	
Масса сырья, г	50,0	
Количество экстрагента, мл	50,0	50,0
Объем полученного экстракта, л	280,0	250,

Вывод. Проведенная исследовательская работа значительно способствовала научному изучению лекарственных свойств растения молочай приземистый (*Euphorbia humifusa Willd.*) и определению перспектив его применения в медицине. В частности, в результате совершенствования технологии экстракции была повышена биологическая активность и стабильность полученного экстракта, что стало основой для расширения его медицинских применений. Совершенствование технологии экстракции повысило качество и эффективность полученного экстракта, расширив возможности его использования в фармацевтической практике. Результаты данного исследования могут стать основой для разработки новых фармакологических препаратов с использованием лекарственных растений. Исследовательская работа продолжается.

Список литературы:

- 1. Wang T.T. Mechanisms of vasorelaxation induced by total flavonoids of Euphorbia humifusa in rat aorta / T.T. Wang, Z.Q. Zhou, S. Wang, et al. // Journal of Physiology and Pharmacology. 2017. Vol. $68.\ No.\ 4.\ P.\ 619-628.\ PMID:\ 29151079.$
- 2. Tian Y, Sun LM, Liu XQ, Li B, Wang Q, Dong JX. AntiHBV active flavone glucosides from Euphorbia humifusa Willd. Fitoterapia 2010; 81: 799-802.
- 3. 7 Dong P, Zhou P, Guo LF. Effects of Euphobial humifusa willd on platelets count aggregation and blood lipids in rat. Chin J Integr Med 1998; 18: 330-332.
- 4. Luyen BT, Tai BH, Thao NP, Eun KJ, Cha JY, Xin MJ, Lee YM, Kim YH. Anti-inflammatory components of Euphorbia humifusa Willd. Bioorg Med Chem Lett. 2014;24(8):1895–900. doi: 10.1016/j.bmcl.2014.03.014.