

ОПЫТ ИСПОЛЬЗОВАНИЯ СТЕРЖНЕВОЙ КОМПОЗИТНОЙ АРМАТУРЫ ПРИ ИЗГОТОВЛЕНИИ РАЗЛИЧНЫХ ВИДОВ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ

Мадиу Тиам Тиерно

студент, Донской Государственный Технический Университет, РФ, г. Ростов-на-Дону

Аннотация. Исследование раскрывает потенциал использования композитной арматуры как коррозионно-стойкой альтернативы стали, анализируя противоречия между её высокой прочностью (до 1500 МПа) и низким модулем упругости, обуславливающим повышенную деформативность конструкций. На примерах международной практики показано, что при двукратном удорожании материала эксплуатационные расходы снижаются на 35-40% за счет увеличения межремонтных циклов. Выявлены ключевые ограничения для массового внедрения: необходимость адаптации нормативной базы под анизотропные свойства полимеров и разработки гибридных армирующих систем для сейсмоопасных зон. Результаты подчеркивают трансформационный эффект композитов в проектировании морских и химических объектов, где долговечность превалирует над жесткостью.

Ключевые слова: композитная арматура, стеклопластиковые стержни, коррозионная стойкость, модуль упругости, гибридное армирование, жизненный цикл конструкций, предварительное напряжение, деформативность, нормативные стандарты.

В современной строительной индустрии наблюдается устойчивый переход к материалам, сочетающим высокие эксплуатационные характеристики с экологической и экономической эффективностью, что особенно актуально в контексте растущих требований к долговечности конструкций в условиях их работы в агрессивной среде и минимизации их углеродного следа [1]. Стержневая композитная арматура, созданная на основе полимерных матриц, армированных высокопрочными волокнами, постепенно вытесняет традиционные стальные аналоги, демонстрируя уникальные свойства, недостижимые для металлов [2]. Ее применение открывает новые горизонты в проектировании объектов, подверженных агрессивным воздействиям — от морских гидротехнических сооружений до мостовых переходов в регионах с суровыми климатическими условиями, где коррозия десятилетиями оставалась ключевым фактором деградации конструкций. Легкость материала не только упрощает логистику и монтаж, но и снижает нагрузку на фундаменты, позволяя реализовывать сложные архитектурные формы без компромиссов в надежности [3]. При этом сочетание высокой удельной прочности и упругой деформации композитов трансформирует подходы к расчету конструкций, смещая фокус с сопротивления пластическим деформациям на управление упругими характеристиками. Интеграция таких решений в нормативную базу и практику проектирования свидетельствует о формировании новой парадигмы в материаловедении, где синтез химии, физики и инженерии становится основой для создания инфраструктуры будущего.

Разработка стеклопластиковой и полимерной композитной арматуры стала ответом на эти вызовы: материалы на основе эпоксидных смол, армированных базальтовыми или стеклянными волокнами, демонстрируют не только коррозионную стойкость в 5-7 раз выше, чем у стали, но и уникальное сочетание высокой прочности на растяжение (до 1500 МПа) с низкой плотностью (в 4-5 раз легче металла) [4]. Пионерами в их промышленном

производстве выступили США, Канада и Япония, где уже в 1980-х годах началось внедрение композитов в мостовые конструкции приморских регионов — например, при строительстве пешеходного моста Томоэгава в Японии с пролетами, армированными углепластиковыми стержнями, или реконструкции причальных стенок порта Ванкувера с использованием стеклопластиковых сеток [5] и других конструкций (рис.1-3) [13].

В Европе лидерство принадлежит Германии и Норвегии, применяющим композиты в тоннелях с высокой влажностью и объектах морской инфраструктуры, таких как волноломы Бергенского порта.

Ключевое отличие композитной арматуры от стальной заключается в анизотропии механических характеристик: при сопоставимой прочности на разрыв ее модуль упругости составляет 50-60 ГПа против 200 ГПа от стального, что приводит к увеличенным деформациям изгибаемых элементов под нагрузкой [6].

Рисунок 1 Набережная Блэкпул, Великобритания (2009 г.)

Рисунок 2. Вокзал (Вена, Австрия) (2007-2008 г.г.)

Рисунок 3. Mocm Irvine Creek (Онтарио, Канада), 2007 г.

Ключевое отличие композитной арматуры от стальной заключается в анизотропии механических характеристик: при сопоставимой прочности на разрыв ее модуль упругости составляет 50-60 ГПа против 200 ГПа от стального, что приводит к увеличенным деформациям изгибаемых элементов под нагрузкой [6].

Эксперименты с железобетонными балками, проведенные в Донском Государствынном Техническом Университете [2-4] показали, что замена стальной арматуры стеклопластиковой при равной площади сечения увеличивает прогибы в 2.1-2.7 раза, а ширину раскрытия трещин — на 40-60%. Это ограничивает ее применение в конструкциях, где жесткость критически важна: в неразрезных многопролетных мостах с динамическими нагрузками, каркасах высотных зданий в сейсмических регионах или элементах подкрановых путей промышленных цехов [9]. Например, в проекте небоскреба «Лахта Центр» в Санкт-Петербурге композитная арматура использовалась только в фундаментной плите, тогда как вертикальные несущие колонны сохранили традиционное стальное армирование из-за требований к устойчивости при ветровых воздействиях [10].

Технико-экономическая эффективность композитов наиболее ярко проявляется в специализированных объектах: очистных сооружениях с постоянным контактом с агрессивными стоками (заводы ВМW в Германии), многослойных стеновых панелях с гибкими связями (жилой комплекс «Сколково Парк»), предварительно напряженных дорожных плитах с увеличенным сроком службы (автобан А-7 в Нидерландах) [11]. Снижение массы арматурного каркаса на 70-80% позволяет сократить расход бетона до 15%, а отсутствие необходимости в антикоррозийной обработке уменьшает трудозатраты на 20-25%, что подтверждается расчетами НИИЖБ им. А.А. Гвоздева для логистических центров в Московской области. При этом в сегменте массового жилищного строительства композиты пока уступают стали из-за высокой стоимости сырья: цена базальтопластикового стержня диаметром 10 мм превышает металлический аналог в 2.2-2.5 раза, хотя анализ жизненного цикла конструкций демонстрирует окупаемость за счет увеличения межремонтных интервалов [12].

 Таблица 1.

 Сравнение прочностных и деформативных характеристик стальной и стеклянной композитной арматур

Характеристика	Композитная арматура (стекло/базальтопластик)	Стальная арматура А500С
Прочность на растяжение	800-1500 МПа (зависит от типа волокна)	500-650 МПа

Модуль упругости	45-60 ГПа (в 3-4 раза ниже стали)	200 ГПа
Коррозионная стойкость	Устойчива к хлоридам, сульфатам, рН 3-11	Требует защитного слоя бетона ≥40 мм
Деформативность	Прогибы конструкций выше в 2.1-2.7 раза	Пластические деформации обеспечивают перераспределение усилий
Плотность	1.9-2.1 г/см³ (на 75% легче)	7.85 г/см ³
Теплопроводность	0.35-0.5 Вт/(м·К) (теплоизолирующие свойства)	46 Вт/(м·К) (мостики холода)
Электропроводность	Диэлектрик (применение в ЛЭП, MPT-кабинетах)	Проводит ток
Стоимость	2.2-2.5× дороже (диаметр 10 мм)	Базовый ценовой ориентир
Оптимальные сферы применения	 Морские сооружения (порт Берген, Норвегия) Химические производства (ВМW, Германия) Многослойные панели («Сколково Парк») 	 Многоэтажное строительство («Лахта Центр») Сейсмоопасные регионы Динамически нагруженные конструкции

Примечания:

- 1. Данные приведены для стержней диаметром 8-12 мм
- 2. Стоимостные показатели актуальны для РФ и ЕС на 2023 г.
- 3. Технические параметры соответствуют ГОСТ 31938-2012 и EN 206

Анализ полувекового опыта применения от экспериментальных советских мостов до масштабных проектов вроде терминала аэропорта Осло-Гардермуэн демонстрирует парадоксальный дуализм материала: беспрецедентная устойчивость к химическим и климатическим воздействиям сочетается с повышенной чувствительностью к проектнорасчетным ошибкам. Если в морских дамбах Нидерландов композиты увеличили межремонтный цикл с 15 до 50 лет, то в сейсмически активных регионах Чили их применение в колоннах многоэтажек привело к недопустимым деформациям из-за недоучета ползучести полимерных матриц. Этот дисбаланс между потенциалом и рисками постепенно нивелируется по мере накопления эмпирических данных: разработка гибридных армирующих систем, где сталь компенсирует низкий модуль упругости композитов, а те, в свою очередь, защищают металл от коррозии, открывает путь для синергии материалов. Экономическая целесообразность, изначально ограниченная дороговизной базальтовых волокон, начинает смещаться в пользу полимеров благодаря замкнутым циклам переработки углепластиков и автоматизации плющения ровинга. Однако главным вызовом остается не технология, а инерция мышления: переход от пластических деформаций стали к хрупкому разрушению композитов требует переосмысления самих принципов обеспечения надежности, что уже находит отражение в пересмотре еврокодов и появлении первых ВІМ-библиотек с нелинейными моделями адгезии.

Список литературы:

- 1. Смоляго Г.А., Дронов В.И., Дронов А.В., Меркулов С.И. Изучение влияния дефектов железобетонных конструкций на развитие коррозионных процессов арматуры // Промышленное и гражданское строительство. 2014. № 12. С. 25–27.
- 2. Польский П.П., Майлян Д.Р. Композитные материалы как основа эффективности в строительстве и реконструкции зданий и сооружений // Инженерный вестник Дона. 2012.

- 3. Польской П.П., Мерват Х., Михуб А. О влиянии стеклопластиковой арматуры на прочность нормальных сечений изгибаемых элементов из тяжелого бетона [Электронный ресурс] // Инженерный вестник Дона. 2012. Т. 23. № 4. Ч.2. Режим доступа: http://ivdon.ru/ru/magazine/archive/ n4p2y2012/1304 (дата обращения: 22.02.2025).
- 4. Хишмах М., Маилян Д.Р., Польской П.П., Блягоз А.М. Прочность и деформативность изгибаемых элементов из тяжёлого бетона, армированных стеклопластиковой и стальной арматурой // Новые технологии. 2012. № 4. С. 147–152.
- 5. Степанова В.Ф., Степанов А.Ю. Неметаллическая композитная арматура для бетонных конструкций // Промышленное и гражданское строительство. 2013. № 1. С. 45-47.
- 6. Римшин В.И., Меркулов С.И. Элементы теории развития бетонных конструкций с неметаллической композитной арматурой // Промышленное и гражданское строительство. 2015. № 5. С. 38-42.
- 7. Римшин В.И., Меркулов С.И. О Нормировании характеристик стержневой неметаллической композитной арматуры // Промышленное и гражданское строительство. 2016. № 5. С. 22– 26.
- 8. Гриценко М.Ю., Щуцкий В.Л. Применение композитной арматуры: перспективы внедрения // Новое слово в науке: перспективы развития: сборник материалов II международной научно-практической конференции. Чебоксары, 2014. С. 68-69.
- 9. Барабанщиков Ю.Г., Беляева С.В. Стеклопластиковая арматура для гидротехнического строительства // Труды СПбГТУ № 502. Строительство. К 100-летию Инженерно-строительного факультета. Санкт-Петербург, 2007. С. 202–210.
- 10. Бондарев Б.А., Сапрыкин Р.Ю., Бондарев А.Б. Стеклопластиковая арматура в элементах конструкций лесовозных железных дорог // Актуальные направления научных исследований XXI века: теория и практика. 2014. Т. 2. № 3-4 (8-4). С. 286–289.
- 11. Есипов С.М. Усиление железобетонных колонн внешним армированием из композиционных материалов // Безопасность строительного фонда России. Проблемы и решения. Материалы Международных академических чтений. 2014. С. 191-199.
- 12. Есипов С.М. Композитные материалы для усиления строительных конструкций // Образование, наука, производство. Белгородский государственный технологический университет им. В.Г. Шухова. 2015. С. 2475-2479.
- 13. Мировой опыт применения композитной стеклопластиковой арматуры. [Электронный ресурс]. URL: https://21kompozit.ru/primenenie-armatury-za-rubezhom/ .