

ВОЗМОЖНОСТЬ РАЗРАБОТОК ТАРГЕТНОЙ И ПРЕВЕНТИВНОЙ ТЕРАПИИ ВИЧ-ИНФЕКЦИИ НА ОСНОВЕ ИЗУЧЕНИЯ SIGLEC-1 РЕЦЕПТОРА

Быков Анатолий Сергеевич

д-р мед. наук, профессор, Первый МГМУ им. И.М. Сеченова, РФ, г. Москва

Катунин Николай Александрович

студент, Первый МГМУ им. И.М. Сеченова, РФ, г. Москва

Калинина Анастасия Александровна

студент, Первый МГМУ им. И.М. Сеченова, РФ, г. Москва

THE DEVELOPMENTS OF TARGET AND PREVENTIVE THERAPY HIV-INFECTION BASED ON RESEARCHES OF SIGLEC-1 MOLECULE

Anatoly Bykov

Ph.D., professor, I.M. Sechenov First Moscow State Medical University, Russia, Moscow

Nicholas Katunin

student, I.M. Sechenov First Moscow State Medical University, Russia, Moscow

Anastasia Kalinina

student, I.M. Sechenov First Moscow State Medical University, Russia, Moscow

Аннотация. Ключевая роль дендритных клеток (ДК) в патогенезе ВИЧ-инфекции заключается в транс-инфицировании CD4+-T-клеток. Транс-инфекция ретровирусов во вторичных лимфоидных образованиях требует обязательного наличия на поверхности ДК молекулы SIGLEC-1 [7]. Изучение SIGLEC-1 в контексте функционирования системы врождённого иммунитета, а также процессов патогенеза ВИЧ-инфекции, открывает направления в разработках новых принципов таргетной и превентивной терапии ВИЧ-инфекции. Немаловажно использование полученных данных о взаимодействии SIGLEC-1 и ВИЧ-1 при разработке вакцины против ВИЧ-1.

Abstract. The primary role of dendric cells (DCs) in pathogenesis of HIV-infection lies in transinfection of CD4+ T cells. Siglec-1 is an important inducible receptor that can accelerate HIV-1 transmission in lymphatic tissues, where many T-cells interact with DCs. The researches of SIGLEC-1 molecule in terms of innate immunity and processes of pathogenesis of HIV-infection discover new ways of target and preventive anti-HIV therapy. The data of interaction between SIGLEC-1 and HIV-1 should be used in development of HIV vaccine.

Ключевые слова: ВИЧ-1; SIGLEC-1; транс-инфекция; дендритные клетки.

Keywords: HIV-1; SIGLEC-1; trans-infection; dendritic cells.

ВИЧ-инфекция – вирусное заболевание, которое характеризуется медленно развивающейся деструкцией иммунной системы, что приводит к синдрому приобретенного иммунодефицита (СПИД). Возбудитель – вирус иммунодефицита человека (ВИЧ) [4].

Ухудшение состояния ВИЧ-инфицированного связано с репликацией вируса в иммунных клетках (преимущественно в СD4-лимфоцитах), что приводит к их гибели. При этом происходит активация иммунной системы, что ведёт к ускоренному созреванию СD4-лимфоцитов и является своеобразным компенсаторным ответом организма на инфекционную агрессию. Благодаря этому, до определенного момента обеспечивается поддержание достаточного количества СD4-лимфоцитов. Однако из-за того, что поражение СD4-клеток вирусом проходит со значительно большей скоростью, чем образование новых, с течением времени динамично снижается их количество, из-за чего в итоге наступает фатальный исход. При этом разрушение CD4-клеток является следствием не столько репликации в них вируса, сколько их предшествующей активации на фоне ВИЧ-инфекции. Также установлено, что ВИЧ может оказывать как проаптоптогенное, так и антиапоптогенное действие [5]. В зараженных клетках происходит подавление проапоптотических сигналов, являющихся ответом на вирусную инвазию. Это создает условия для пролиферации и диссеминации вируса. Одновременно с этим в незараженных клетках вирус, напротив, индуцирует апоптоз, приводя к подавлению Т-ассоциированного иммунного ответа. Установлено, что большая часть погибающих лимфоцитов не инфицирована ВИЧ. При этом их гибель вносит основной вклад в истощение популяции CD4+ T-клеток [3]. Важным аспектом во всех этих процессах является взаимодействие CD4+ лимфоцитов с клетками миелоидного ряда (врождённой линии иммунитета), таких как макрофаги и дендритные клетки. Они не подвержены ВИЧ-индуцированному апоптозу и выступают в роли вирусных резервуаров и основных переносчиков вируса. Взаимодействие этих клеток с белками ВИЧ обусловлено целым рядом рецепторов на их поверхности. Изучение этих мембранных структур необходимо для разработок новых средств таргетной терапии при ВИЧ-инфекции, а также разработке эффективных средств превентивной терапии.

Особенности патогенеза ВИЧ-инфекции

После того, как вирионы ВИЧ попадают на поверхность и внутрь организма, они оказываются в различных по своей агрессивности биологических жидкостях. Слюна и желудочный сок содержат ферменты, способные разрушить вирионы ВИЧ в большей степени, чем другие биологические жидкости (стоит отметить, что это не относится к младенцам первых месяцев жизни, так как у них ещё не вырабатывается ряд пищеварительных ферментов, из-за чего возможно заражение через грудное молоко). Основными входными воротами инфекции являются слизистые оболочки мочеполового и пищеварительного тракта. Если слизистая оболочка повреждена, то проникновение вируса в организм существенно облегчается, однако этот момент совершенно не обязателен для инфицирования [2]. В просвет органа в норме постоянно проникают дендритные клетки (или их отростки) и захватывают вирусные частицы. Так или иначе, первые, кто взаимодействует с ВИЧ – это всегда разные подтипы дендритных клеток (ДК) [4].

В ДК ВИЧ может попадать разными способами. Через CD4+ рецепторы (CXCR5), которые в небольшом количестве экспрессируются на поверхности этих клеток. Так же рецептором проникновения является белок DC-SIGN (молекула адгезии дендритных клеток). Он взаимодействует с мембранным гликопротеином (gp120). Также вирус может проникать в клетку с помощью гликолипидов оболочки. В этом случае взаимодействие происходит с белком (лекитном) на клеточной поверхности, способными связывать сиаловые кислоты. Он называется SIGLEC-1 (Sialic acid-binding immunoglobulin-type lectins)

В последних двух случаях происходит следующее: рецепторы захватывают и удерживает ВИЧ в цитоплазме зрелых дендритных клеток. ВИЧ и рецептор накапливаются в виде эндосомы

вблизи ядра ДК. Не всегда может происходить образование эндосомы и часто вирион остаётся просто адсорбированным на рецепторе [3]. Дендритные клетки относительно устойчивы к продуктивному инфицированию ВИЧ. Однако основная их роль в патогенезе ВИЧ-инфекции заключается в инфицировании CD4+ клеток и активации этих клеток (Стоит особо подчеркнуть, что заражение и продуктивная репликация ВИЧ возможна только в активированных Т-хелперах) ДК мигрируют в лимфоидную ткань, где происходит их взаимодействие с CD4+ Т-клетками [1]. При этом инфицирование CD4+ Т-клеток возможно тремя путями. Первый путь - это взаимодействие поверхностно-связанных интактных вирионов на лектинах C-типа (таких как DC-SIGN). Второй путь - экзоцитоз образовавшихся мультивезикулярных телец (созревшая эндосома Вирион плюс рецептор - при непродуктивном типе взаимодействия с ДК). И третий - инфицирование осуществляется за счёт, почкования вновь образованных вирионов после активной вирусной репликации (продуктивный тип взаимодействия с ДК). Результатом взаимодействия является прикрепление ВИЧ к клетке посредством контакта белка др120 (оболочечный гликопротеид) с двумя рецепторами на поверхности клетки - CD4+ и коррецептором CCR5 либо CXCR4 (хемокиновые рецепторы). Рецепция ВИЧ обусловлена взаимным распознаванием тримера белка gp120 вируса и мембранного гликопротеина CD4+ клетки-хозяина, поэтому спектр клеток-мишеней этого вируса определяется экспрессией молекулы CD4+ на их поверхности. Таким образом, главными мишенями служат Т-лимфоциты, а также незрелые тимоциты, экспрессирующие оба корецептора (CD4+ и CD8+). Дендритные клетки и макрофаги также эффективно заражаются вирусом, однако не погибают, способствуя вирусному персистированию и репликации, служат вирусными резервуарами [6]. Помимо вышеуказанных, многие другие клетки даже с небольшим количеством CD4+ могут заражаться ВИЧ. Дополнительные рецепторы, необходимые для проникновения ВИЧ в клетки - корецепторы CXCR4 и CCR5. Они взаимодействуют с белком qp120 и играют важную роль в слиянии вирусной оболочки с мембраной клетки. В начале происходит связывание CD4+ с др120, в результате чего изменяется конформация др120. Три молекулы др120 раскрываются наподобие лепестков цветка. Становится возможным взаимодействие gp120 с корецептором CCR5. Модификация формы gp41 вируса, подтягивание вирусной частицы к клетке и процесс слияния (фузии) мембран клетки и вируса. В цитоплазме происходит «раздевание» вируса процесс депротеинизации, в результате которого РНК ВИЧ освобождается от белков капсида и нуклеокапсида. Происходит связывание РНК ВИЧ с рибосомой клетки и под действием ревертазы начинается процесс обратной транскрипции. Происходит синтез сначала одноцепочечной, а затем двухцепочечной копии ДНК вируса. После завершения обратной транскрипции в CD4+-лимфоците вирусный геном представлен провирусной невстроенной ДНК. В инфицированной клетке обнаруживаются ДНК линейной и кольцевой формы. Для встраивания провирусной ДНК в геном клетки-хозяина и для образования новых вирусов необходима активация Т-лимфоцитов. Активация CD4+-лимфоцитов происходит при их контакте с антигенпредставляющими клетками в лимфоидной ткани. Наличие вирусов на поверхности фолликулярных дендритных клеток и присутствие провоспалительных цитокинов (ИЛ-1, ИЛ-6 и ФНОα) способствуют размножению ВИЧ в инфицированных клетках. Именно поэтому лимфоидная ткань служит самой благоприятной средой для репликации ВИЧ.

SIGLEC-1 (CD169) и клетки миелоидного ряда системы врождённого иммунитета

Лектины – белки и гликопротеины, которые способны высокоспецифично связываться с остатками углеводов на поверхности клеток, в частности, вызывая их агглютинацию. Функция лектинов заключается в клеточном распознавании, например, некоторые патогенные микроорганизмы используют лектины для прикрепления к клеткам макроорганизма. Также одной из функцией является адгезивная функция, необходимая мигрирующим клеткам в макроорганизме. Среди лектинов выделяют семейство белков SIGLEC, участвующих в адгезии клеток за счёт связывания сиаловой кислоты. Семейство SIGLEC адгезивных рецепторов являются белками, связывающими сиаловую кислоту, которые содержат углеводсвязывающий центр І-типа и происходят из иммуноглобулинового складывания [10].

На дендритных клетках и макрофагах (кроме клеток микроглии) широко представлена молекула этого семейства SIGLEC-1 (CD169) (Sialic acid binding Ig-like Lectin сиалоадгезин) – трансмембранный иммуноглобулиноподобный лектин 1, связывающий сиаловую кислоту [8]. SIGLEC-1 (CD169) является поверхностным рецептором миелоидных-клеток, который имеет решающее значение для адгезии ВИЧ-1 на этих клетках за счёт связывания с липидами

вирусной оболочки и последующей транс-инфекции Т-лимфоцитов, а также других миелоидных клеток [6].

Дендритные клетки являются основными антиген-презентирующими клетками в системе врождённого иммунитета. Они находятся в слизистом и подслизистом слое органов и тканей и способны мигрировать в регионарные лимфоидные образования. Таким образом, ДК являются необходимыми участниками в патогенезе ВИЧ-инфекции, поскольку без них вирус не способен проникнуть в среду богатую активированными СD4+ Т-клетками [4]. Молекулы, связывающие ВИЧ и участвующие в процессах транс-инфекции (ключевой этап в патогенезе ВИЧ) являются предметом многочисленных исследований. Ещё недавно полагали, что основная роль в процессах транс-инфицирования принадлежит лектиновым молекулам С-типа (кальций-связывающих) на дендритных клетках - DC-SIGN. Однако позже, в результате исследований в естественных условиях на мышиных моделях, было установлено, что надёжная транс-инфекция ретровирусов во вторичных лимфоидных образованиях требует обязательного наличия на поверхности дендритных клеток SIGLEC1. Исследования, проводимые на клеточных культурах, показывают что при выключении гена, кодирующего молекулу SIGLEC1, инфицирование CD4+ Т-лимфоцитов представляется невозможным, даже при условии активации этих клеток. Ряд исследований показывает зависимость от выраженности экспрессии SIGLEC1 на ДК и макрофагах и степенью прогрессирования ВИЧинфекции [9] [10].

Таким образом, изучение SIGLEC-1 в контексте функционирования системы врождённого иммунитета, а также процессов патогенеза ВИЧ-инфекции, открывает направления в разработках новых принципов таргетной и превентивной терапии ВИЧ-инфекции. Немаловажно использование полученных данных о взаимодействии SIGLEC-1 и ВИЧ-1 при разработке вакцины против ВИЧ-1.

Список литературы:

- 1. Ганковская Л.В., Намазова-Баранова Л.С., Мешкова Р.Я. Основы общей иммунологии: Учебное пособие для студентов медицинских вузов М.: ПедиатрЪ, 2014. 125 с.
- 2. Ерохина М. Н. Густов А. В. Руина Е. А. Шилов Д. В. Клинические варианты поражения нервной системы при ВИЧ-инфекции // Современные технологии в медицине, №3 / 2010 УДК: 616.8+616.97
- 3. Хасанова Г.Р., Мустафин И.Г., Анохин В.А. К вопросу о патогенезе ВИЧ-инфекции: роль активации иммунной системы в прогрессировании заболевания // Эпидемиология и инфекционные болезни, №3 / 2012 УДК:616.98:578.828.6]-092:612.017.1.064
- 4. Ярилин А.А. Иммунология М.: ГЭОТАР-Медиа, 2010. 752 c.
- 5. Cummins N.W. and Badley A.D.. Mechanisms of HIV-associated lymphocyte apoptosis. Citation: Cell Death and Disease (2010) 1, e99; doi:10.1038/cddis.2010.77
- 6. Jobe O, Trinh HV, Kim J, Alsalmi W, Tovanabutra S, Ehrenberg PK, et al. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region. J Leukoc Biol 2016; 99:1089-1106.
- 7. Martinez-Picado , McLaren PJ , Erkizia I, Martin MP, Benet S, Rotger M, Dalmau J, Ouchi D, Wolinsky SM, Penugonda S, Günthard HF,Fellay J, Carrington M, Izquierdo-Useros N, Telenti A. Identification of Siglec-1 null individuals infected with HIV-1 // Nature Communication 2016 Aug 11;7:12412. doi: 10.1038/ncomms12412.
- 8. Norton SE, Dunn ET, McCall JL, Munro F, Kemp RA. Gut macrophage phenotype is dependent on the tumor microenvironment in colorectal cancer. Clin Transl Immunology 2016; 5:e76.
- 9. Ousman Jobe, Jiae Kim, Mangala Rao. The Role of Siglec-1 in HIV-1/Macrophage Interaction //

Macrophage 2016; 3: e1435. doi: 10.14800/Macrophage.1435

10. Pino M, Erkizia I, Benet S, Erikson E, Fernandez-Figueras MT, Guerrero D, et al. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 2015; 12:37.