

ИСПОЛЬЗОВАНИЕ ТЕПЛОВИЗИОННЫХ КАМЕР ДЛЯ ДИАГНОСТИКИ ПОВРЕЖДЕНИЙ ДВУХЦЕПНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ

Губинец Никита Сергеевич

студент, Самарский государственный технический университет, РФ, г. Самара

Сейчас мы рассмотрим один самых перспективных методов в этой области и это использование тепловизионных камер.

Но для начала упомянем метод визуального контроля, который, однако, имеет свои ограничения. Для него требуется большое количество ресурсов и затрат времени. У него есть огромный минус, который максимально проявляется в условиях плохой видимости и ужасных погодных явлений. В связи с этим в последнее время большой акцент идет на тепловизионные камеры, которые перекрывают все минусы визуального метода. Они обеспечивают высокую точность и очень сильно ускоряют процесс диагностики.

Эта камера работает на основе принципа инфракрасной термографии. Она предназначена для измерения и визуализации тепловой энергии. Такие устройства способны регистрировать инфракрасное излучение, которое испускается различными материалами, и преобразовывать его в изображение, где определенная температура показывается разным цветом. Благодаря этому можно не только обнаружить перегрев, но и анализировать состояние компонентов ЛЭП.

«Можно сразу выделить несколько очень важных аспектов. Перво-наперво, благодаря этим камерам можно быстро и действенно проводить обследования внушительных участков» [3, с.33]. Вдобавок, тепловизионные камеры обладают высокой чувствительностью и могут заметить настолько мизерные изменения в температуре. Это дает право выяснить о всех проблемах на начальном этапе их появления.

Процесс диагностики обычно происходит в несколько этапов. В начале должно пройти планирование обследования, в ходе него выясняются участки линии, которые в теории могут подвергнуться риску повреждения. Это могут быть как и зоны, где происходят аварии, так и места с высокой нагрузкой. Ну и после этого происходит само обследование с помощью нашей камеры. Также и для хороших надо проверять в конкретные промежутки времени, когда температура наиболее подходит.

«Данные которые мы получим, анализируются с помощью программного обеспечения (ПО), которое проводит количественный анализ. Этот анализ содержит в себе сравнение температурных показателей, изменяющихся в течение времени» [5, с.47]. В конце такого анализа формируется отчет, в который заносят любые странности.

Хоть у этих камер довольно много преимуществ, но все же есть и недостатки, сопряженные с какими-то сложностями. Как и в любых методах, тут нужны высококлассные специалисты способные правильно понять результаты, и всегда есть риск ложного срабатывания. Поэтому никогда не стоит забывать это при диагностике. Снизу показан четкий пример использования тепловизора на (рисунке).

Рисунок 1. Наглядное применение тепловизора при диагностике

Заключение

Методы распознавания повреждений в двухцепных линиях электропередачи с использованием тепловизионных камер представляют собой современный и эффективный инструмент для повышения надежности и безопасности работы электрических сетей. Внедрение таких технологий позволяет не только оперативно выявлять и устранять неисправности, но и значительно сократить затраты на обслуживание и эксплуатацию линий электропередачи. С учетом растущих требований к качеству электроснабжения и необходимости обеспечения устойчивости энергетических систем, использование тепловизионных камер становится все более актуальным и востребованным направлением в области диагностики и мониторинга состояния линий электропередачи.

Список литературы:

- 1. Иванов А.В. Тепловизионные методы диагностики электрооборудования // Электротехника и электроника. 2018. \mathbb{N}^4 . C. 45-52.
- 2. Кузнецов М.Ү., Технологии тепловизионной диагностики // Вестник науки и техники. 2019. №2. С. 112-119.
- 3. Лебедев В.П., Григорьев А.Н. Использование тепловизоров для диагностики линий электропередачи: преимущества и ограничения // Электроэнергетика. 2017. №5. C.

- 4. Петров С.И., Смирнова Е.А. Инфракрасная термография в диагностике линий электропередачи // Журнал энергетики и электросетей. 2020. №3. С. 67-75.
- 5. Сидоров Д.В., Иванова Е.М.. Анализ эффективности тепловизионных методов в диагностике линий электропередачи // Журнал автоматизации и телемеханики.— 2021.— №1.— С.88-95.