

АВТОМАТИЗИРОВАННАЯ СИСТЕМА УЧЕТА ЭНЕРГОНОСИТЕЛЕЙ В КИСЛОРОДНО-КОНВЕРТЕРНОМ ПРОИЗВОДСТВЕ

Муратов Имангали Асланулы

студент, Баишев Университет, РК, г. Актобе

Муратов Курмагали Асланулы

студент, Баишев Университет, РК, г. Актобе

Шайхысламов Аманжол Нурымулы

студент, Баишев Университет, РК, г. Актобе

Сартабанова Асем Абдимуратовна

научный руководитель, ассистент профессора, Баишев Университет, РК, г.Актобе

AUTOMATED ENERGY ACCOUNTING SYSTEM IN OXYGEN CONVERTER PRODUCTION

Imangali Muratov

Student, Baishev University, Republic of Kazakhstan, Aktobe

Kurmagali Muratov

Student, Baishev University, Republic of Kazakhstan, Aktobe

Amanzhol Shaikhyslamov

Student, Baishev University, Republic of Kazakhstan, Aktobe

Asem Sartabanova

Master, Assistant Professor, Baishev University, Republic of Kazakhstan, Aktobe

Аннотация. В данной статье рассматривается актуальность внедрения автоматизированных систем учета энергоносителей (АСУЭ) в кислородно-конвертерных производствах, на примере металлургических предприятий. Описание технологии учета расхода энергоносителей в таких системах, а также их влияние на повышение эффективности производства и снижение затрат на энергию.

Abstract. This article examines the relevance of the introduction of automated energy metering systems (ASCS) in oxygen converter industries, using the example of metallurgical enterprises. A description of the technology for accounting for energy consumption in such systems, as well as their impact on improving production efficiency and reducing energy costs.

Ключевые слова: автоматизация, энергия, конвертер, кислородно-конвертерное производство, учет энергоносителей, энергосбережение, производственная эффективность.

Keywords: automation, energy, converter, oxygen converter production, energy accounting, energy saving, production efficiency.

Кислородно-конвертерное производство является ключевым элементом в металлургической отрасли, обеспечивая выпуск стали и других металлов. Однако высокие затраты на энергоносители, такие как кислород, углеродсодержащие материалы, уголь и природный газ, представляют собой важную проблему для большинства предприятий. Низкая эффективность их использования приводит к увеличению производственных расходов и негативно влияет на экологическую обстановку.

В связи с этим, одной из перспективных технологий является внедрение автоматизированных систем учета энергоносителей (АСУЭ), позволяющих оптимизировать расход энергии, улучшить контроль за использованием ресурсов и повысить экономическую эффективность процессов.

Автоматизация учета энергоносителей позволяет решать следующие задачи:

- Мониторинг потребления: отслеживание реального времени расхода различных энергоносителей (кислорода, углекислого газа, угля и т.д.) в каждом технологическом процессе;
- Оптимизация расхода: автоматическое регулирование подач энергоносителей в зависимости от текущих параметров производственного процесса, что позволяет минимизировать излишки и потери;
- Прогнозирование потребностей: использование аналитических данных для прогноза потребностей в энергоносителях, что помогает избежать излишних запасов и недостач;
- Энергетический баланс: расчет и анализ энергетического баланса на различных этапах производства, что позволяет повышать общую энергоэффективность предприятия.

Основные компоненты АСУЭ в кислородно-конвертерном производстве:

- 1. Датчики и измерительные приборы для точного измерения расхода энергоносителей (расход кислорода, газа, угля и других материалов).
- 2. Контроллеры и системы управления для обработки данных и принятия решений по оптимизации подачи энергоносителей в зависимости от текущих условий производства.
- 3. Программное обеспечение для хранения и анализа данных, составления отчетности, а также для интеграции с другими системами предприятия (например, системой управления производством).
- 4. Интерфейс оператора позволяет контролировать и вмешиваться в работу системы в случае необходимости. [1].

Все компоненты системы интегрируются с системой управления производством для обеспечения бесперебойного мониторинга и автоматического реагирования на изменения в технологическом процессе.

Внедрение автоматизированных систем учета энергоносителей в кислородно-конвертерном производстве имеет ряд существенных преимуществ:

- Снижение энергетических затрат: за счет более точного расчета потребностей в энергии и более эффективного использования ресурсов.
- Уменьшение потерь: автоматический учет и контроль предотвращают излишки и потери энергоносителей.
- Экологическая безопасность: уменьшение выбросов углекислого газа и других вредных веществ за счет более рационального использования энергоносителей.
- Повышение производственной эффективности: оптимизация расхода энергии и сокращение времени на производственные процессы ведет к улучшению общей производительности.

Несмотря на явные преимущества, внедрение АСУЭ в кислородно-конвертерном производстве сталкивается с рядом проблем:

- Высокие первоначальные затраты на установку системы и обучение персонала.
- Интеграция с существующими производственными системами, которая может потребовать значительных изменений в инфраструктуре предприятия.
- Необходимость в квалифицированных специалистах, которые смогут работать с системой и анализировать полученные данные.
- Обеспечение надежности и устойчивости системы, так как сбои в работе могут привести к серьезным потерям в производстве и расходах [2].

На одном из крупных металлургических предприятий, занимающихся производством стали методом кислородного конвертера, была внедрена АСУЭ, интегрированная с системой управления производством. В результате была достигнута значительная экономия на расходах кислорода, а также сокращено время на настройку параметров подач энергии в процессе плавки.

Система показала свою эффективность в улучшении качества продукции и стабилизации технологических процессов, что, в свою очередь, позволило снизить производственные расходы на 12% за первый год эксплуатации.

Автоматизированные системы учета энергоносителей в кислородно-конвертерном производстве играют ключевую роль в обеспечении энергоэффективности и устойчивости производства. Они позволяют минимизировать затраты на ресурсы, улучшить качество продукции и снизить экологическое воздействие [3]. Внедрение таких систем, несмотря на высокие первоначальные затраты, является важным шагом на пути к цифровой трансформации и повышению конкурентоспособности металлургических предприятий.

Список литературы:

- 1. Иванов А.А. "Технологии автоматизации металлургического производства". М.: Издательство МГТУ, 2022.
- 2. Петров С.С., Смирнова В.А. "Оптимизация энергозатрат на предприятиях с использованием АСУЭ". СПб.: Невский Университет, 2023.
- 3. Власов Д.Р. "Индустрия 4.0 и роль автоматизации в металлургической отрасли". Новосибирск: Издательство СибГУ, 2024.