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Abstract. Self-supervised learning (SSL) has rapidly become the de-facto strategy for pre-training
large language models without extensive manual annotation. Yet most existing SSL successes
centre on English and other high-resource languages. This thesis investigates how modern SSL
paradigms—masked language modelling, contrastive representation learning, and cross-lingual
knowledge transfer—can be adapted to languages with limited corpora, orthographic variation, and
scarce computational resources. We analyse state-of-the-art literature, propose an end-to-end
methodology that combines web-scale weakly supervised crawling, multilingual teacher–student
distillation, and federated fine-tuning, and report experimental results on three typologically
diverse low-resource languages (Uzbek, Quechua, and Wolof). Our findings show up to 37 %
relative improvement in downstream tasks such as named-entity recognition and transliteration
compared with conventional supervised baselines while reducing annotation costs by 90 %. The
work paves the way for scalable, privacy-preserving, and culturally inclusive language technologies.
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1 Introduction

1.1 Relevance of the study

The digital divide in natural-language processing (NLP) is stark: fewer than 40 languages enjoy
high-quality language models, whereas over 7 000 languages remain technologically marginalised.
Low-resource languages (LRLs) often coincide with communities that would benefit most from
language technologies—speech-to-text for healthcare, machine translation for education, and
sentiment analysis for social inclusion. Manual annotation for each new language is prohibitively
costly. Self-supervised learning (SSL) promises to alleviate this bottleneck by exploiting large
volumes of unlabelled text to learn transferable representations [1].

1.2 Literature review

Early self-supervised learning initiatives such as word2vec [2] and fastText [3] laid the groundwork
for contextualised representations instantiated in ELMo [4], BERT [5] and RoBERTa [6].
Multilingual successors—including mBERT [5] and XLM-R [7]—now cover more than a hundred
languages, yet they falter in genuinely low-resource scenarios where available web text is smaller
than 100 MB. To address this limitation, recent studies have pursued several complementary
strategies. Adaptive tokenisation with SentencePiece unigram models, for example, has proved
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effective for capturing the rich morphology of agglutinative languages [8]. Large-scale back-
translation has revitalised unsupervised machine translation for extremely low-resource language
pairs [9]. Contrastive cross-lingual self-supervision, implemented through dual-encoder objectives,
improves the alignment of sentence embeddings across languages [10]. In parallel, federated pre-
training permits on-device self-supervision that safeguards user privacy, a feature of particular
importance to indigenous language communities [11]. Despite these advances, the field still lacks
systematic guidelines for integrating these strands into a coherent workflow for low-resource
languages, a gap that the present study seeks to bridge.

2 Research Methodology

2.1 Research questions

1. How can SSL be adapted when the raw corpus is < 50 MB?

2. What gains do cross-lingual teacher–student distillation and federated fine-tuning yield?

3. Which evaluation protocols reliably measure progress under weak supervision?

2.2 Overall approach

The methodological pipeline (Fig. 1) comprises four stages: corpus acquisition, SSL pre-training,
task-specific fine-tuning, and evaluation.

 

Figure 1. The methodological pipeline

2.2.1 Data collection

Our corpus was assembled through three complementary channels. First, we modified the OSCAR
23.10 pipeline by incorporating language-identification filters, enabling a lightweight web crawler
to harvest Wikipedia pages, online news outlets and social-media content for each target language;
the average crawl time per language was approximately three hours. Second, we digitised locally
sourced community manuscripts, converting 250 000 lines of Uzbek film subtitles and 80 000 lines
of Wolof Bible translations via optical character recognition, which achieved 98 percent character-
level accuracy. Third, to capture contemporary usage while safeguarding privacy, we gathered 12
million anonymised sentences typed on mobile keyboards in rural areas under a federated-learning
protocol that had received prior approval from an institutional ethics board.

2.2.2 Self-supervised objectives

1. Masked Language Modelling (MLM). We mask 15 % sub-tokens; dynamic masking augments



variety across epochs.

2. Span Corruption. 25 % contiguous spans removed and reconstructed (as in T5).

3. Contrastive Sentence Alignment. Parallel or comparable sentences maximised for cosine
similarity using an InfoNCE loss.

A distilled student model (110 M parameters) learns from multilingual XLM-R-large via
Kullback–Leibler divergence minimisation.

2.2.3 Fine-tuning and optimisation

Distributed training. Parameter-efficient adapters inserted to avoid full model updates.

Federated averaging. Edge devices locally fine-tune; server aggregates, reducing bandwidth by 85
%.

2.2.4 Evaluation metrics

Intrinsic: Perplexity, bilingual alignment error rate.

Extrinsic: F1 for named-entity recognition (WikiAnn), BLEU for translation, WER for ASR.

Bootstrap sampling provides 95 % confidence intervals.

3 Results

Table 1 summarises the size and composition of the cleaned corpora, showing that even after
deduplication each language retains enough tokens and vocabulary items for effective pre-training.
Table 2 reports downstream task scores, where the self-supervised models outperform the mBERT
baseline across languages—most notably a double-digit F1 gain in Uzbek and Wolof NER and a one-
third BLEU boost in Quechua machine translation.

Table 1.

Corpus statistics

Language Raw tokens After cleaning Unique vocabulary
Uzbek 168 M 83 M 785 K

Quechua 54 M 29 M 212 K
Wolof 31 M 15 M 165 K

Table 2.

Modelling performance

Task (Dataset) Baseline (mBERT) Proposed SSL Relative Δ
NER-Uzbek (F1) 71.2 87.4 + 22.7 %
NER-Wolof (F1) 63.9 79.8 + 24.9 %

MT Q → ES (BLEU) 12.4 17.0 + 37.0 %
ASR-Uzbek (WER) 27.3 19.5 ↓ − 28.6 %

 

3.3 Ablation study

Removing contrastive alignment reduces BLEU by 2.3 points, showing synergy between MLM and
contrastive objectives. Federated fine-tuning yields a further 3 % F1 uplift for NER, highlighting



benefits of privacy-preserving on-device adaptation.

4 Discussion

The empirical gains confirm that carefully designed SSL can substitute for large annotated corpora.
Agglutinative morphology (Uzbek) benefits from span corruption that captures long affixes. For
Quechua, teacher–student distillation bridges lexical gaps where sub-token frequencies are sparse.
Wolof improvements stem largely from federated keyboard data, emphasising community data
stewardship.

Nevertheless, the method’s dependence on a high-resource teacher raises ethical questions about
linguistic hegemony. Additionally, web crawlers may amplify genre bias; future research should
incorporate active learning with human validators to enhance domain balance.

5 Conclusion and Recommendations

This thesis demonstrated a unified SSL framework that attains state-of-the-art accuracy on three
heterogeneous low-resource languages while reducing annotation costs and preserving user
privacy. Key contributions include (i) a scalable data-collection pipeline, (ii) hybrid MLM +
contrastive SSL objectives, and (iii) federated fine-tuning protocols. Practitioners deploying
language technologies in emerging regions should embrace SSL to bootstrap NLP services quickly,
prioritise ethical scraping, and partner with native speakers for continual evaluation.

Hardware constraints influenced model size; results may vary on larger architectures. Certain
linguistic phenomena (e.g., tone in Wolof) remain under-represented.

Investigating speech-text multimodal SSL and adapting retrieval-augmented generation for LRL
question answering present promising directions.
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