

МОДЕЛЬНО-ОРИЕНТИРОВАННОЕ УПРАВЛЕНИЕ СЕТЯМИ: NETCONF И YANG В КОНТЕКСТЕ NMDA, БЕЗОПАСНОСТИ И ЖИЗНЕННОГО ЦИКЛА МОДЕЛЕЙ

Леньшина Дарья Сергеевна

студент, Сибирский государственный университет телекоммуникаций и информатики, РФ, г. Новосибирск

Кравцова Анна Александровна

студент, Сибирский государственный университет телекоммуникаций и информатики, Р Φ , г. Новосибирск

MODEL-DRIVEN NETWORK MANAGEMENT: NETCONF AND YANG IN THE CONTEXT OF NMDA, SECURITY, AND MODEL LIFECYCLE

Lenshina Daria Sergeevna

student, Siberian State University of Telecommunications and Informatics, Russia, Novosibirsk

Kravtsova Anna Aleksandrovna

student, Siberian State University of Telecommunications and Informatics, Russia, Novosibirsk

Аннотация. В данной статье рассматриваются протокол NETCONF и язык YANG как основа модельно-ориентированного управления конфигурацией сетевых устройств. Формализуются ключевые понятия (RPC-операции, датасторы, YANG Library, NACM), анализируется архитектура NMDA и её импликации для согласованности данных. Выполнено сопоставление с RESTCONF и gNMI, обсуждаются требования безопасности, транзакционность и интероперабельность между платформами в условиях масштабируемой автоматизации.

Abstract. This article discusses the NETCONF protocol and the YANG language as a basis for model-oriented configuration management of network devices. Key concepts (RPC operations, datastores, YANG Library, NACM) are formalized, the NMDA architecture and its implications for data consistency are analyzed. A comparison with RESTCONF and gNMI is made, security requirements, transactionality, and interoperability between platforms in the context of scalable automation are discussed.

Ключевые слова: NETCONF, YANG 1.1, NMDA, YANG Library, NACM, RESTCONF, gNMI, верификация, транзакция, безопасность.

Keywords: NETCONF, YANG 1.1, NMDA, YANG Library, NACM, RESTCONF, gNMI, verification, transaction, security.

Рост масштаба сетей и требований к воспроизводимой автоматизации обуславливает потребность в формальных, машино-читаемых моделях конфигурации и транзакциях с верифицируемой семантикой. Протокол NETCONF (IETF) предоставляет стандартизованный канал RPC поверх защищённого транспорта, а язык YANG задаёт строгую схему данных, охватывающую конфигурацию, операционное состояние, удалённые процедуры и уведомления. Существенным этапом эволюции стала архитектура Network Management Datastore Architecture (NMDA), унифицирующая представление «намеренной» (intended) и «фактической» (operational) конфигурации.

NETCONF использует XML-кодирование RPC и поддерживает базовые операции: get, get-config, edit-config, copy-config, delete-config, lock/unlock, validate, close-session/kill-session. Семантика хранилищ определяется через capabilities: обязательное <running> и опциональные <candidate>, <startup>. Для NMDA введены операции get-data/edit-data; атрибут происхождения данных (origin) позволяет разделять уровни конфигурации. Состав схем и их ревизии публикуются через YANG Library, что обеспечивает согласованность клиента и сервера.

Модель доступа NACM формализует права субъектов на узлы дерева данных, RPC и уведомления. Для корректной интерпретации значений по умолчанию используется capability with-defaults. На транспортном уровне NETCONF реализуется поверх SSH или TLS с взаимной аутентификацией.

YANG представляет иерархию данных через контейнеры, списки и листья; поддерживает переиспользование (typedef, grouping/uses), расширение деревьев (augment), отклонения (deviation) и условную компиляцию (if-feature). Версия 1.1 уточняет семантику ограничений (when/must), вводит действия (action) и расширяет работу с уведомлениями. Экземпляры данных допускают кодирование в XML и JSON; для RESTCONF регламентировано сопоставление YANG→JSON.

С точки зрения эволюции схем целесообразно применять семантическое версионирование (draft-ietf-netmod-yang-semver): ревизии помечаются метками совместимости, зависимости фиксируют минимально допустимые версии модулей; рекомендуется вести журнал изменений (change log) и проводить централизованное ревью моделей.

RESTCONF предоставляет доступ к тем же YANG-данным средствами HTTP(S), упрощая интеграцию с веб-сервисами, однако его транзакционная семантика обычно слабее, чем у «классического» NETCONF. Протокол gNMI (OpenConfig) на базе gRPC ориентирован на операции Get/Set/Subscribe и эффективную потоковую телеметрию. На практике рациональна комбинированная стратегия: NETCONF — для атомарных изменений и строгих commit/rollback, RESTCONF — для простых CRUD-интеграций, gNMI — для масштабируемых подписок.

Ключевые преимущества связки NETCONF+YANG — формальная верифицируемость изменений и переносимость автоматизации между платформами. Ограничения обусловлены необходимостью вендорской поддержки стека, сложностью управления версиями и возможными расхождениями между intended и operational в периоде согласования. Практически оправдана комбинированная эксплуатация NETCONF/RESTCONF/gNMI с учётом функциональной области.

NETCONF и YANG формируют фундамент модельно-ориентированного управления. Архитектура NMDA задаёт единую картину конфигурационных и эксплуатационных данных, а дисциплина транзакций (lock/validate/commit) в сочетании с жёсткой валидацией схем повышает предсказуемость изменений. Сопоставление с RESTCONF и gNMI демонстрирует комплементарность подходов при построении целостной архитектуры управления.

Список литературы:

1. RFC 6241 — Network Configuration Protocol (NETCONF) [Электронный ресурс]. Режим

доступа: https://datatracker.ietf.org/doc/html/rfc6241 (дата обращения 13.08.2025)

- 2. RFC 7950 The YANG 1.1 Data Modeling Language [Электронный ресурс]. Режим доступа: https://datatracker.ietf.org/doc/html/rfc7950 (дата обращения 13.08.2025)
- 3. RFC 8342 Network Management Datastore Architecture (NMDA) [Электронный ресурс]. Режим доступа: https://datatracker.ietf.org/doc/html/rfc8342 (дата обращения 13.08.2025)
- 4. RFC 8525 YANG Library (NMDA) [Электронный ресурс]. Режим доступа: https://www.rfc-editor.org/rfc/rfc8525.html (дата обращения 13.08.2025)
- 5. RFC 8040 RESTCONF Protocol [Электронный ресурс]. Режим доступа: https://www.rfc-editor.org/rfc/rfc8040.html (дата обращения 13.08.2025)