

ТМАО(ТРИМЕТИЛАМИНОКСИД): НЕБОЛЬШАЯ МОЛЕКУЛА БОЛЬШИХ ОЖИДАНИЙ

Баловнева Елена Владимировна

студент, Оренбургский государственный медицинский университета, РФ, г. Оренбург

Лебедева Елена Николаевна

научный руководитель, канд. биол. наук, доцент, Оренбургский государственный медицинский университета, РФ, г. Оренбург

Уже давно широко известно, что употребление в пищу продуктов, которые богаты холестерином и насыщенными жирами, таких как красное мясо, яичный желток, молоко и многие другие, опосредованно с повышением риска сердечно-сосудистых патологий. Проведенные исследования показали, что в состав этих продуктов входят такие компоненты как: фосфатидилхолин, холин, L-карнитин, которые в свою очередь способствуют ускоренному развитию атеросклероза. Новый путь атерогенеза представляет собой превращение перечисленных выше нутриентов, которые содержат группу триметиламина, при непосредственном участии микробиоты. В результате сложых биохимических реакций происходит образование проатерогенного маркера - триметиламин-N-оксида(ТМАО). Впервые связи ТМАО и риска сердечно-сосудистых катостроф была установлена с использованием метаболомного скрининга. Автором было продемонстрировано, что образование ТМАО из пищевых источников фосфатидилхолина зависит от метаболизма кишечной микробиоты. При этом установлена прямая корреляция уровня ТМАО и повышенным риском возникновения наиболее часто встречаемых сердечно-сосудистых катастроф. Для подтверждения этого факта, было проведено исследование с участием двух групп здоровых пациентов, между которыми существовало различие в отсутствием или наличием предшествующего недельного курса терапии антибиотиками широкого спектра действия. Обе группы одинаково употребляли в пищу вареные яйца с желтком вместе с равнозначным количеством фосфатидилхолина, который в свою очередь был мечен дейтерием. В результате исследования было доказано что, продукты метаболизма фосфатидилхолина, включая и ТМАО, были повышены в группе без антибиотикотерапии, в то время как использование антибиотиков предотвращало повышение уровня ТМАО. Данное исследование подтверждает главную роль кишечной микробиты в реализации данного метаболического пути у людей. Более того, установили связь между тощаковыми значениями ТМАО в плазме и развитием основных сердечно-сосудистых катастроф (инфаркт миокарда, инсульт или смерть) на протяжении 3-х лет наблюдения. Высокие значения ТМАО продолжали демонстрировать прогностическую ценность даже после корректировки по традиционным факторам риска, маркерам воспаления и оценки функции почек. Полученные информация позволяют нам заподозрить, что патогенетический вклад зависимого от микробиоты пути формирования ТМАО распространяется за пределы влияния на прогрессию атеросклероза и его последствий. И так, установлено, что самые высокие значения ТМАО наблюдаются у пациентов с ишемической болезнью сердца (ИБС). К тому же, стало известно неблагоприятное прогностическое значение ТМАО у стабильных пациентов с хронической сердечной недостаточностью (ХСН), которое не имело связи с общепринятыми факторами риска, маркеров системного воспаления, а также мозгового натрийуретического пептида и скорости клубочковой фильтрации. Не менее интересен тот факт, что уровень ТМАО имеет тенденцию к существенному увеличению у пациентов с конечными стадиями хронической болезни почек. В результате исследования, метаболомные данные, полученные из когорты Фремингемского исследования, отметили ТМАО как один из метаболитов, циркулирующих в плазме здоровых людей, который в свою очередь определяет развитие хронической болезни почек в будущем. Данное исследования полностью меняет современное представление о

многосторонности процессов атерогенеза, и требуют основательного анализа пищевых источников ТМАО, а также этапов образования этой молекулы и механизмов, способствующих атеросклерозу. Основным главенствующим предшественником обсуждаемого маркера атерогенеза являются четвертичные амины, которые входят в состав пищи: холин, фосфатидилхолин и L-карнитин, которые под влиянием кишечной микробиоты трансформируются в его предшественник - ТМА. Данная молекула абсорбируется через стенку кишки и попадая в системный кровоток, далее по портальной системе доставляется в печень, где за счет активности флавиновых монооксидаз (ФМО) трех типов происходит конвертация молекулы в ТМАО. Одна из основных ролей в развитии атеросклероза принадлежит провоцированным ТМАО-нарушениям обратного захвата холестерина, что и является одним из объяснений тесной взаимосвязи между ТМАО, холином, карнитином и риском сердечно-сосудистых катастроф. Еще одним путем реализации атерогенного потенциала ТМАО служит усиление способности макрофагов накапливать в своей цитоплазме молекулы холестерина и превращаться в пенистые клетки, которые составляют основу атеросклеротической бляшки. Это явление провоцируется увеличением экспрессии на поверхности макрофагов проатерогенного скевинджер-рецепторов СD36 и А. Так же ТМАО может оказывать влияние на стероидный метаболизм, путем уменьшения экспрессии матричной РНК печеночных ферментов, которые участвуют в катализации синтеза желчных кислот. К продукты, наиболее часто используемым в рационе, и содержащие большое количество холина, относят яичные желтки, молоко, печень, зародыши пшеницы, некоторые орехи, красное мясо. Холин, является жизненно важной молекулой, реализуя свою основную функцию через построение клеточных мембран (входит в состав фосфатидилхолина). Однако, холин не может быть полностью исключен из рациона, так как его тяжелая недостаточность может стать причиной неврологических нарушений. L-карнитин выполняет основную функцию в качестве транспортера жирных кислот в митохондрии и, в отличие от холина, не является неотъемлемым компонентом нашего повседневного рациона, поскольку необходимое его количестве продуцируется в организме из лизина. На самом деле метаорганизменный путь деградации L-карнитина является важнейшим источником проатерогенного ТМАО, что было доказано на биологических моделях. К примеру, добавление L-карнитина к диете мышей с гиперлипидемией приводило к изменению микробного состава кишечника, последующему повышению ТМАО и способствовало развитию атеросклероза. Так как, главным пищевым продуктом, содержащим L-карнитина в наибольшем количестве является красное мясо, был изучен уровень ТМАО в группах вегетарианцев, а также тех, кто не ограничивал себя в употреблении мяса. В ходе оценки результатов было обнаружено закономерное снижение способности к образованию ТМАО и его предшественника ТМА среди вегетарианцев в сравнении с употребляющей мясные продукты группой сравнения. Это наталкивает на выводы, что именно постоянное присутствие мясных продуктов в рационе, источников Lкарнитина, способствует изменению качественного и количественного взаимоотношения среди «комменсалов» кишечника с явным преимущественным содержанием, использующих Lкарнитин в качестве источника энергии. Как следствие таких перемен - происходит интенсификация образования проатерогенного ТМАО, рост его плазменной концентрации и повышения риска сердечно-сосудистого катастроф. Интересен тот факт, что весьма длительное время L-карнитин использовался как элемент обогащения диеты, однако последние полученные данные служат поводом для осознания неправдивости этих данных, демонстрируя главенствующую роль L-карнитина в ускорении атерогенеза. Следует обратить внимание, что с каждым новым годом годом сердечно-сосудистые заболевания приобретают все большее количество признаков системного состояния. Этот факт основывается на открытии порой очень неожиданных связей между функциональными и структурными «компартментами» нашего организма. Кишечная микробиота занимая все более передовые позиции в сердечно-сосудистой патологии, все чаще ассоциируется с большим эндокринного органа, который производит огромный спектра биологически активных метаболитов. Таким образом, при выборе терапевтических стратегий необходимо учесть, что этот эндокринный орган характеризуется пластичностью микробной популяции, а уточнение путей влияния ТМАО на атерогенез имеет интерес для разработки таргетной терапии.

Список литературы:

1. Cambien F, Tiret L. Genetics of cardiovascular diseases: from single mutations to the whole

genome. Circulation 2007; 116(15): 1714-24.

- 2. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359(21):2195-207.
- 3. Vinje S, Stroes E, Nieuwdorp M, et al. The gut microbiome as novel cardiometabolic target: the time has come Eur Heart J 2014;35(14):883-7