

КОМБИНИРОВАННОЕ ИСПОЛЬЗОВАНИЕ ДИЗЕЛЬ-ГЕНЕРАТОРНОЙ УСТАНОВКИ И BETPOГЕНЕРАТОРА

Хамитов Даулет Айтбекович

студент, Костанайский социально-технический университет им. 3. Алдамжар, Казахстан , г. Костанай

Курьерова Марина Петровна

научный руководитель, старший преподаватель кафедры «Транспорт и технологии», Костанайский социально-технический университет им. З. Алдамжар, Казахстан, г. Костанай

Этот вариант представляет собой электроснабжение предприятия, основным источником питания которого будет дизель-генераторная установка.

В пиковые часы покрывать потребление будет ветрогенератор мощностью 10 кВт, в качестве резервного питания примем аккумуляторные батареи.

Выбор дизельной электростанции в качестве основного источника питания.

Дизель-генераторную установку выберем по средней потребляемой нагрузке. Летом нагрузка составляет - 4,32 кВт * ч, зимой -4,67 кВт * ч.

Соответственно, выберем дизель-генераторную установку SDMO Т9НК, чьи основные параметры приведены в таблице ниже.

Таблица 1.

Общие данные SDMO Т9НК

Параметр	Значение	
Производитель	SDMO (Франция)	
Модель	Т9НК	
Максимальная мощность	9 кВА /7 кВт	
Номинальная мощность	8 кВА /7 кВт	
Базовая мощность	7 кВА /5 кВт	
Максимальная сила тока, А	13	
Номинальный ток в основном режиме, А	12	
Напряжение,В	220/380	
Уровень шума, дБ	78	

Таблица 2.

Двигатель

Параметр	Значение
Производитель двигателя	Mitsubishi (Япония)
Модель двигателя	1,2 E
Количество и расположение цилиндров	двурядное
Максимальная мощность двигателя, кВт	9,68
Частота вращения, об/мин	3000
Тип охлаждения	воздушное
Объем двигателя, л	0,64
Объем масляной системы, л	2,4
Удельный расход топлива, л/кВт*ч	0,529
Расход топлива при 100% нагрузке, л/час	3,5
Расход топлива при 75 % нагрузке, л/час	2,6
Расход топлива при 50 % нагрузке, л/час	1,7

Также в данной таблице выражены данные по расходу топлива в зависимости от загрузки двигателя. Более точные данные показаны на графике рисунка 2. Верхняя прямая относится к выбранной установке.

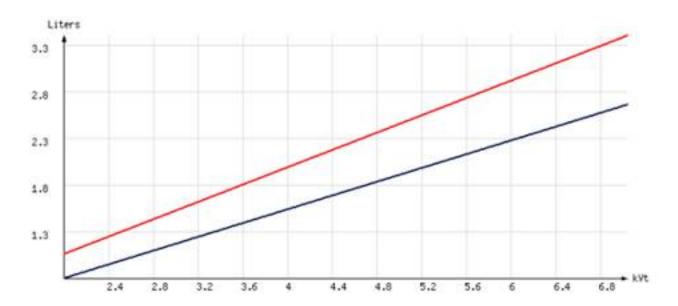


Рисунок 1. График расхода топлива

В таблице 3 записаны габариты установки открытого исполнения.

Таблица 3.

Габариты и вес (открытое исполнение)

Параметр	Значение
Габариты, мм	1220x700x922
Емкость бака, л	50
Максимальная автономия (при нагрузке 100 %), ч	14,4
Максимальная автономия (при нагрузке 75 %), ч	19,2
Максимальная автономия (при нагрузке 50 %), ч	28,8
Масса, кг	240

Максимальное число часов автономной работы установки в зависимости от загрузки были отражены в таблице 3. Более точные данные показаны на рисунке 4, где нижняя кривая относится к выбранной установке.

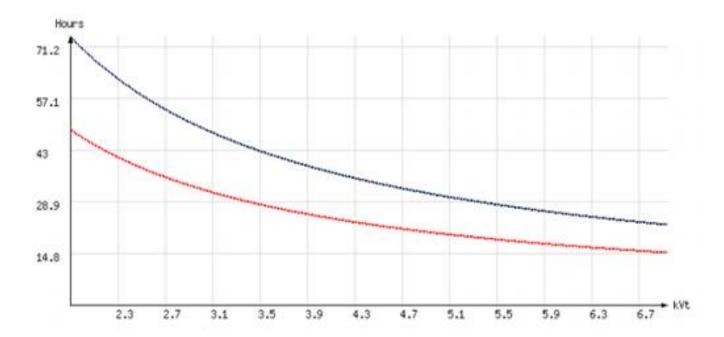


Рисунок 2. График зависимости времени автономной работы ДГУ от нагрузки

Закончив описание дизель-генераторной установки перейдем к расчету ветрового потока.

Дизель-генераторная установка будет работать постоянно и покрывать основную потребность в электроэнергии. На рисунке 3 представлен график потребления электроэнергии зимой и работа дизельной электростанции. Видно, что в пиковые часы появляется нехватка энергии, которую будет покрывать ветрогенератор.

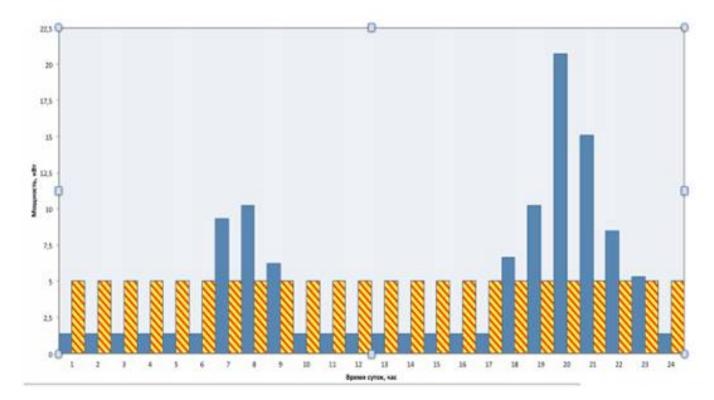


Рисунок 3. Потребление зимой и мощность ДГУ

Для расчета энергии ветрового потока воспользуемся значениями базы данных по ветропотенциалу для Костанайской области в зимнее время. Выбрали среднестатистический зимний день и рассчитали среднюю скорость ветра в каждый час суток. Данные отражены в таблице 4.

Таблица 4 . Выработка электроэнергии в зимнее время

Время суток,	Скорость ветра, м/сек.	Энергия ветра, Вт/м ²	Мощность ветрогенерат
час			кВт
1	14,73	19,528	32,81
2	13,18	1400,95	23,54
3	11,02	819,45	13,77
4	9,39	506,3	8,51
5	8,47	372,19	6,25
6	6,85	196,8	3,31
7	7,73	282,35	4,74
8	6,15	142,01	2,39
9	5,66	111,04	1,87
10	1,83	3,75	0,06
11	1,77	3,36	0,06
12	1,52	2,13	0,04
13	2,30	7,46	0,13
14	2,58	10,46	0,18
15	3,70	31,01	0,52
16	4,88	70,98	1,19
17	5,22	86,88	1,46
18	6,43	162,9	2,74
19	5,92	127,15	2,14
20	6,06	135,76	2,28

21	7,79	289,58	4,86
22	11,57	948,13	15,93
23	12,33	1147,03	19,27
24	12.45	1180.2	19.83

Из таблицы 4 возьмем значения выработки электроэнергии ветрогенератором и занесем данные в пятый столбец таблицы 5.

Таблица 5. Нехватка электроэнергии зимой

Время	Дизель, кВт	Потребление,	Дизель-потребность	Ветрогенератор,	Нехва
суток, час					
-		кВт	0.000	кВт	
1	5	1,328	3,672	32,81	 '
2	5	1,328	3,672	23,54	<u>-</u> '
3	5	1,328	3,672	13,77	<u>-</u> ‡!
4	5	1,328	3,672	8,51	<u>-</u> '
5 C	5	1,328	3,672	6,25	<u>-</u> '
6	5	1,328	3,672	3,31	
7	5	9,328	-4,328	4,74	+ -
8	5	10,231	-5,231	2,39	-2,85
9	5	6,231	-1,231	3,46	-
10	5	1,328	3,672	3,04	-
11	5	1,328	3,672	4,01	+
12	5	1,328	3,672	4,42	+
13	5	1,328	3,672	4,34	+
14	5	1,328	3,672	3,65	+
15	5	1,328	3,672	2,78	+
16	5	1,328	3,672	1,19	-
17	5	1,328	3,672	1,46	-
18	5	6,656	-1,656	2,74	-
19	5	10,231	-5,231	2,14	-3,09
20	5	20,671	-15,671	2,28	-1
21	5	15,096	-10,096	4,86	-5,23

L		<u>.l</u> .	<u></u>	<u> </u>		
4	22	5	8,432	-3,432	15,93	<u> </u>
ļ	7.2	-	T 220	0.220	10.07	<u> </u>
_	23	5	5,328	-0,328	19,27	ĺ '
Ļ		 '	4.000	0.000	10.00	igwdapprox igwedge
4	24	þ	1,328	3,672	19,83	ſ
	Итого			-47,204	Итого	-2
	1		,	· '	1	l

Зимой в пиковые часы (8, 19, 20, 21) потребность в электроэнергии выше вырабатываемой мощности дизель-генераторной установкой и ветрогенератора. Поэтому в качестве резервного источника питания возьмем аккумуляторные батареи, накапливающие в течение суток электроэнергию, вырабатываемую ветрогенератором.

Заключение: Этот вариант электроснабжения представляет собой комбинированную работу дизель-генераторной установки и ветрогенератора.

Плюсом данного варианта является наличие надежного бесперебойного источника питания – дизель-генераторная установка. Однако, установка претерпевает постоянные изменения с нагрузкой, поэтому снижается ее эксплуатационный срок. К плюсам также можно отнести использование ветрогенератора в качестве резервного источника питания, но нестабильный ветер вынуждает использовать аккумуляторные батареи.

Список литературы:

- 1. Голицын М.В., Голицын А.М., Пронина Н.В. Альтернативные энергоносители. М.: Наука, 2004. С.159.
- 2. Тауд Р. Перспективы развития тепловых электростанций на органическом топливе // Теплоэнергетика. 2000. № 2. С. 68–72.
- 3. Дубовской С.В. Состояние и перспективы развития комбинированного производства электрической и тепловой энергии в странах Европейского Союза // Проблемы общей энергетики. 2004. № 10. С.12.