

МИКРОБИОМ КИШЕЧНИКА И ЕГО РОЛЬ В ФОРМИРОВАНИИ ИММУННОЙ СИСТЕМЫ

Ахатов Жасурбек Жахонгирович

студент, Ташкентский государственный стоматологический институт, Узбекистан, г. Ташкент

Абдухакимов Жавохирбек Нодирбек угли

студент, Ташкентский государственный стоматологический институт, Узбекистан, г. Ташкент

Рахматова Мукаддас Холтаевна

научный руководитель, канд. мед. наук, доцент, Ташкентский государственный стоматологический институт, Узбекистан, г. Ташкент

В настоящее время понятие «микрофлора человека» утратило свою актуальность: мы несем в своем организме не просто набор бактерий, а настоящий биом — микробиом. Но если биом с точки зрения экологов представляет собой крупную экосистему, то наше тело — это место обитания многочисленной популяции микроорганизмов, своего рода микробная экосистема, характеризующаяся своей генетической регуляцией и сложными взаимодействиями и реагирующая на влияние факторов внешней и внутренней среды. Она настолько уникальна, что в мире не найдется двух людей с идентичным микробиомом. Различия в микробном составе зависят от таких факторов среды, как набор питательных веществ, рН, влажность и температура. Те или иные их значения способствуют размножению бактерий и опосредуют пользу, которую они могут принести хозяину — человеку.

Микробиом распределен в нашем организме неравномерно, по его топографии и видовому составу принято различать микробиом кожи, полости рта, дыхательных путей, урогенитального тракта и кишечника. Наиболее крупным микробиомом нашего тела является, несомненно, кишечный. Он может состоять из сотен видов различных микроорганизмов, но у взрослого человека преобладают бактерии двух типов: Firmicutes и Bacteroidetes. Кишечный микробиом изучен лучше других бактериальных сообществ человека, и многолетние исследования, о которых будет рассказано ниже, показали, что именно он в большей степени влияет на здоровье своего носителя.

Микрофлора пищеварительного тракта представляет собой сложную экологическую систему, включающую наряду с кишечными бактериями, слизистые оболочки хозяина, компоненты пищи, вирусы, грибы. Основная масса микрофлоры фиксирована к специфическим рецепторам энтероцитов слизистой оболочки (СО) желудочно-кишечного тракта (ЖКТ), образуя микроколонии (мукозная микрофлора), и лишь незначительная часть ее находится в свободном состоянии в просвете кишки (внутрипросветная микрофлора).

Состав кишечных бактерий каждого биотопа пищеварительного тракта является постоянным, что связано со способностью микроорганизмов фиксироваться к строго определенным рецепторам эпителиальных клеток слизистой оболочки. У здорового человека в проксимальных отделах тонкой кишки содержится относительно небольшое количество грамположительных аэробов и факультативных анаэробов, таких как лактобактерии или энтерококки в концентрации до 104 колониеобразующих единиц на 1 г (КОЕ/г) тонкокишечного содержимого. В данном биотопе транзиторно могут присутствовать колиформные бактерии, количество которых редко достигает 103 КОЕ/г содержимого. В дистальных отделах тонкой кишки основными представителями являются энтеробактерии,

включая и колиформные анаэробы, при этом концентрация микроорганизмов возрастает и достигает 105-109 КОЕ/г содержимого. Основным местом обитания нормальной кишечной флоры является толстая кишка. Общая биомасса микробных клеток толстой кишки составляет около 1,5 кг, что соответствует 1011-12 КОЕ/г кишечного содержимого и приблизительно 1/3 сухой массы фекалий. Именно толстая кишка в силу такой высокой микробной контаминации несет самую большую функциональную нагрузку по сравнению с другими биотопами. К постоянным видам толстокишечных бактерий относят неспорообразующие анаэробы (до 1012), такие как бактероиды, бифидобактерии, эубактерии, а также аэробы и факультативные анаэробы – стрептококки, лактобактерии, энтеробактерии (эшерихии), грибы.

Давайте же совершим путешествие в прошлое и разберем, как формируется микробиом нашего кишечника. Еще до недавнего времени считалось, что плод в утробе матери полностью огражден от контакта с миром микроорганизмов, то есть человек рождается полностью стерильным, а его заселение бактериями происходит позже. Но появились данные о том, что первые колонизаторы осваивают организм человека еще до его рождения. В ряде исследований было выявлено, что в плаценте, околоплодных водах, пуповинной крови и первичном кале — меконии — присутствуют бактерии родов Enterococcus, Escherichia, Leuconostoc, Lactococcus и Streptococcus, а у недоношенных младенцев — следы Enterobacter, Enterococcus (в меньшей степени, чем у доношенных), Lactobacillus, Photorhabdus и Tannerella. Также в одной из работ были получены доказательства внутриутробной бактериальной транслокации — проникновения бактерий из кишечника матери к плоду. Исследователи предполагают, что это происходит посредством кровотока: механизмом, сходным с «энтеромаммарной осью», о которой поговорим чуть позже. Эту гипотезу поддерживают данные другого эксперимента, в котором беременные мыши перорально получали меченых Enterococcus faecium, после чего эти бактерии «заявляли о себе» в плаценте и даже меконии еще не рожденных мышат. Но всё же по-настоящему серьезный контакт с миром микроорганизмов происходит после рождения, и во многом от того, как пройдет эта встреча, зависит будущее здоровье человека. Колонизация кишечника у здоровых детей укладывается в четыре последовательные временные фазы. Первая длится от момента рождения до двух недель. Микробная популяция в этот период представлена в основном стрептококками и кишечной палочкой. В зависимости от вида вскармливания — грудного или искусственного через некоторое время присоединяются бифидо- или лактобактерии соответственно. В небольших количествах обнаруживаются и представители родов Clostridium и Bacteroides. Через две недели начинается вторая фаза, которая продолжается до введения в рацион прикорма. В это время увеличивается численность представителей рода Bacteroides. С момента введения прикорма начинается третья фаза, длящаяся до завершения грудного вскармливания. В эту фазу окончательно формируется микробиом ребенка: постепенно, по мере увеличения в рационе доли твердой пищи и снижения доли грудного молока, растет количество бактероидов и анаэробных грамположительных кокков (пептококков и пептострептококков). Окончание грудного вскармливания знаменует переход к четвертой фазе. Она характеризуется относительной стабильностью микробного состава, который сохраняется в течение всей жизни индивида. А теперь рассмотрим подробнее, как протекают процессы колонизации и становления иммунного ответа вовремя и после рождения. Как оказалось, даже характер родоразрешения (ребенок может появиться на свет естественным путем, а может и оперативным, с помощью кесарева сечения) влияет на состав микробиома младенца. Первое, с чем сталкивается ребенок, — микробный мир родовых путей его матери. У небеременных женщин идентифицировано шесть видов лактобактерий, исходя из соотношения которых выделяют по крайней мере пять качественно различных типов микробиома влагалища. В четырех из них — характерных, как правило, для представительниц европейских и азиатских народов — преобладают следующие представители рода Lactobacillus: L. crispatus (I тип микробиома); L. gasseri (II тип микробиома); L. iners (III тип микробиома); L. jensenii (V тип микробиома). IV тип микробиома часто встречается у чернокожих и латиноамериканских женщин и характеризуется низким уровнем Lactobacillus spp. и большим числом анаэробных бактерий. Интересно, что женщины, имеющие IV тип микробиома влагалища, более склонны к развитию специфических и неспецифических воспалительных гинекологических заболеваний. Этот феномен связан со снижением количества Lactobacillus spp., которые в норме создают неблагоприятную для патогенов кислую среду. Также было установлено, что у этих женщин больше шансов заразиться ВИЧ, ведь воспалительные процессы увеличивают на поверхности слизистых оболочек численность СD4-содержащих лимфоцитов — основных мишеней вируса. При беременности из-за

изменения рН влагалища бактериальное разнообразие уменьшается, но повышается стабильность состава микробиоты. Как правило, в этот период в микробиоме преобладают Lactobacillus crispatus и Lactobacillus iners. Количественное превосходство этих видов подчеркивает их важность для поддержания здоровой среды родовых путей. У европейских и азиатских женщин во время беременности могут происходить сдвиги между типами микробиомов, но, как правило, они редко переходят к IV типу. Таким образом, в зависимости от особенностей микробиоты влагалища матери ребенок начинает свою жизнь со «знакомства» с определенным видовым набором микроорганизмов, что подчеркивает важность исследований микробиомов различных групп населения. Но во что же выливается это знакомство? Почему вообще заселение микробами так важно для ребенка? Дело в том, что бактерии за счет симбиотических взаимоотношений с эпителиальными и иммунными структурами кишечника фактически активируют иммунную систему хозяина. Покидая родовые пути естественным образом, доношенный новорожденный в небольших количествах заглатывает представителей вагинальной и кишечной микробиоты матери. В основном это бактерии родов Prevotella, Sneathia и Lactobacillus. Если же родоразрешение происходит путем кесарева сечения, одними из первых колонизируют организм новорожденного представители кожных микробиомов матери и медицинского персонала, в основном бактерии родов Propionibacterium, Corynebacterium и Streptococcus. У таких младенцев отмечают замедление заселения кишечника филой Bacteroidetes и низкое бактериальное разнообразие в течение первых двух лет жизни. Однако с четырех месяцев различия в бактериальном разнообразии с естественно рожденными детьми начинают стираться, и к 12 месяцам практически исчезают.

Тем не менее очевидно, что характер родоразрешения влияет на микробиом новорожденного. Правда, пока неясно, сказываются ли эти различия на здоровье взрослого индивида: хотя некоторые эпидемиологические исследования демонстрируют связь между кесаревым сечением и различными заболеваниями, причина их развития окончательно не выяснена.

Не менее важным фактором в формировании микробиома новорожденного является характер питания. Грудное молоко — оптимально сбалансированная пища для младенца, обеспечивающая его нормальное развитие. Как известно, в первые дни жизни именно оно защищает ребенка от инфекционных болезней и способствует снижению смертности от них за счет содержания множества иммунных факторов: Т- и В-лимфоцитов, плазматических клеток, иммуноглобулинов (в первую очередь IgA) и антимикробных ферментов (лизоцима и лактоферрина). Установлено, что грудное вскармливание в какой-то мере предотвращает развитие таких хронических заболеваний, как сахарный диабет и ожирение. И, несомненно, грудное молоко способствует формированию «здорового» микробиома.

Список литературы:

- 1. Hooper L.V., Littman D.R., Macpherson A.J. (2012). Interactions between the microbiota and the immune system. Science. 336, 1268–1273;
- 2. Mayer E.A., Knight R., Mazmanian S.K., Cryan J.F., Tillisch K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490-15496;
- 3. Rajilic-Stojanovic M., Heilig H.G., Molenaar D., Kajander K., Surakka A., Smidt H., de Vos W.M. (2009). Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ. Microbiol. 11, 1736–1751