

О РАЗРАБОТКЕ СТАНДАРТА ПРЕДПРИЯТИЯ НА КРОВЕОСТАНАВЛИВАЮЩИЕ БИНТЫ

Пугач Алина Павловна

магистрант РГУ им. А.Н. Косыгина, Р Φ , г. Москва

Актуальность темы настоящей работы подтверждается отсутствием в названиях российских стандартов на медицинские бинты упоминания о главном свойстве бинтов - остановка кровотечения из открытых ран, в то время как в имеющихся стандартах подразумевается наличие такого свойства: «основное назначение — закрывать рану от инфекции и впитывать кровь (благодаря природным свойствам)». Когда упоминается об остановке кровотечения, то в образе современного человека возникает тугая повязка со жгутом, наложение которого приводит к полному прекращению кровоснабжения раненного органа. Способ эффективный, но чреват ишемическим повреждениям организма. [4, с.3] Известно, что кровеостанавливающим эффектом обладает обыкновенная ткань - марля, только с более отложенным по времени эффектом. Последнее связано с том, что марля выступает в качестве фильтра на пути крови от открытой раны, а остановленная подпиткой кровь сворачивается. Задачей настоящей работы является подготовка исходных материалов для разработки стандарта на такой бинт, чтобы он способствовал относительно быстрой остановке кровотечения и не приводил к полному прекращению кровоснабжения поврежденного органа. [5, с.135]

Таким образом, требуется проанализировать различные свойства тканевых бинтов и далее определиться, какие характеристики этих свойств принять в стандарт предприятия.

Анализ отечественных и зарубежных образцов бинтов, изготовленных из различного сырья, показал, что есть набор свойств бинтов, наиболее удовлетворяющих современным требованиям медицины.

К ним относятся:

- хорошая поглощающая способность (гигроскопичность);
- капиллярность;
- определенная влажность;
- нейтральность (химическая неагрессивность);
- возможность стерилизации (без ухудшения качества);
- эластичность;
- отсутствие раздражающих ткани свойств;
- они должны быть мягкими, но не сыпучими . [2, с.78]

Указанный набор свойств с определенными величинами их количественных значений позволяет как прямое использование бинтов в качестве средств кровеостанавливающих и защищающих раны от внешних воздействий, так и позволяющих применение различных пропиточных химических и медицинских препаратов для создания наилучших условий

заживления ран. По оценке экспертов наибольшего эффекта в остановке кровотечения следует ожидать от свойств - эластичность и капиллярность тканевых бинтов.

Основным методом определения значимых показателей качества является экспертный мето ∂ определения коэффициентов весомости показателей качества, как наиболее простой в практике. [4, c.3]

Экспертная оценка включает в себя следующие этапы работ: формирование группы экспертов, подготовку опроса экспертов, опрос экспертов, обработку экспертных значений, анализ полученных результатов.

В нашем экспертном опросе приняли участие 9 человек (5 преподавателей кафедры ТМ и Э, а так же 4 медицинских работника).

Опираясь на ГОСТ 1172-93 «Бинты марлевые медицинские. Технические условия» [6, с. 2-5] и ГОСТ 16977-71 «Бинт эластичный медицинский. Технические условия» [6, с. 2-3], как на два наиболее близких по тематике, составим первичный список показателей качества /x1-x10/, а именно:

- 1. Линейные размеры,
- 2. Линейная плотность,
- 3. Поверхностная плотность,
- 4. Растяжимость,
- 5. Удлинение при разрыве,
- 6. Разрывная нагрузка,
- 7. Белизна бинта,
- 8. Капиллярность,
- 9. Гигроскопичность,
- 10. Эластичность бинта.

При проведении опроса, эксперты выставили ранги показателям качества, где R=1 - наиболее важный, а R=n - наименее значимый показатель качества. [1, с. 207]

В результате обсчета экспертного опроса получены показатели значимости свойств, сведенные в таблицу 1.

Таблица 1.

Результаты экспертного опроса

	x1	x2	х3	x4	х5	х6	х7	x8	х9	x10	Сумма	Tj
Эксперт 1	9,5	6	7,5	5	3,5	3,5	9,5	7,5	1	2	55	1,5
Эксперт 2	10	8,5	8,5	2	5,5	4	7	5,5	3	1	55	1
Эксперт 3	10	7,5	5,5	3	9	7,5	5,5	4	1	2	55	1
Эксперт 4	8,5	4,5	6,5	3	10	4,5	8,5	6,5	1	2	55	1,5
Эксперт 5	9	8	6	3	5	4	10	7	1	2	55	0
Эксперт 6	10	8	6,5	3	4,5	6,5	9	4,5	1,5	1,5	55	1,5
Эксперт 7	10	4	6	3	7	8	9	2	5	1	55	0
Эксперт 8	10	8,5	5	4	6,5	6,5	8,5	3	1,5	1,5		1,5
Эксперт 9	10	8	6	4	5	7	9	3	2	1	55	0
Si	87	63	57,5	30	56	51,5	76	43	17	14	495	8,0
Scp	49,50											
Si-Scp	37,50	13,50	8,00	-19,50	6,50	2,00	26,50	-6,50	-32,50	-35,50		
(Si-Scp)^2	1406,3	182,3	64	380,3	42,25	4	702,3	42,25	1056	1260	5140	
Rcp	9,67	7,00	6,39	3,33	6,22	5,72	8,44	4,78	1,89	1,56		
d=R9-Rcp	0,33	1,00	-0,39	0,67	-1,22	1,28	0,56	-1,78	0,11	-0,56		
d^2	0,11	1,00	0,15	0,44	1,49	1,63	0,31	3,16	0,01	0,31	8,62	
W	0,77		Po 9	0,94		X^2	62,47		Х^2 таб	16,90	Zзнач	0,1
zi	0,01	0,07	0,08	0,15	0,08	0,10	0,03	0,12	0,18	0,19	1,00	0,73
	-	-	-	+	1	+	-	+	+	+		
Z0i				0,20		0,13		0,16	0,25	0,26	1,00	
σ	0,56	1,73	1,05	0,87	2,14	1,72	1,38	1,95	1,34	0,46	0,46	
Номер по возрастанию:			2		4		5	3	1			

Существенно значимыми считают показатели, для которых $z^{*}1/n$. [1, c.211]

Соответственно определяющими показателями качества выбираем:

- 1. Эластичность (0,26)
- 2. Гигроскопичность (0,25)
- 3. Растяжимость (0,20)
- 4. Капиллярность (0,16)
- 5. Разрывная нагрузка (013)

Для определения числовых характеристик данных показателей качества далее использовались стандартные методики, представленные в ГОСТ 16218.1-93, 16218.2-93, 16218.4-93, 20227-74, 3813-72, 18054-75, 3816-81, 1172-93 и других. [3].

Выполненная работа позволила подготовить исходные данные для последующих опытов и испытаний с целью уточнения значений требуемых технических характеристик бинтов, включаемых в стандарт предприятия.

Список литературы:

- 1. Соловьев А.Н., Кирюхин С.М., Оценка качества и стандартизация текстильных материалов. М., «Легкая индустрия», 1974г.
- 2. Шустов Ю.С. Основы текстильного материаловедения М.: МГТУ им. А.Н. Косыгина, 2007г.
- 3. Общероссийский Классификатор Стандартов.
- 4. Антонова М. В., Красина И. В., Сафаров В. Г., Парсанов А. С., Современные методы модификации перевязочных средств. Обзор. //Вестник Казанского технологического университета. 2014г.
- 5. Олтаржевская Н. Д., Коровина М. А., Савилова Л. Б. Перевязочные материалы с пролонгированным лечебным действием, //Российский химический журнал. 2002, \mathbf{T} .

XLVI, № 1

- 6. ГОСТ 1172-93 «Бинты марлевые медицинские. Технические условия»
- 7. ГОСТ 16977-71 «Бинт эластичный медицинский. Технические условия»