

ИССЛЕДОВАНИЕ ПОВРЕЖДАЕМОСТИ НЕОБОГРЕВАЕМЫХ ГИБОВ, ВЫПОЛНЕННЫХ ИЗ СТАЛИ 20

Ламбеков Ками Нуржанович

магистрант Карагандинский государственный технический университет, Казахстан, г. Караганда

Балбекова Бахыт Кабкеновна

канд. техн. наук, доцент, Карагандинский государственный технический университет, Казахстан, г. Караганда

Одним из самых распространенных и важнейших элементов современных тепловых электрических станций (далее ТЭС) являются трубопроводы различных диаметров и конфигураций, служащих для транспортировки воздуха, водяного пара, воды, газа, масла, мазута и других сред. Трубопроводы соединяют между собой основные агрегаты электростанции и вспомогательное оборудование. Наиболее распространенными и ненадежными элементами трубопроводов являются гибы труб [1]. В этой связи вопросы обеспечения надежности необогреваемых гибов в процессе эксплуатации являются весьма актуальными.

Для проведение широкого спектра научных дисследований по анализу дпричин отказов, предельных состояний материалов и расчетному обоснованию ресурса элементов оборудования [2].

В данной работе представлены результаты исследования поврежденного гиба от напорнопитательного коллектора до входных коллекторов водяного экономайзера 1 ступни (устанавливаемых на котлоагрегатах типа ТП81) диаметром 133х13dмм и выполненного из стали 20.

Исследование поврежденного металла проводили на вырезке из гиба, забракованного и демонтированного при плановом контроле.

Химический данализ опытного образца проводился на оптико-эмиссионном спектрометре. Пробаддля химического анализа была приготовлена соответствией с ГОСТ 7565-81, оптико-эмиссионный химический анализ проводился в соответствии с ГОСТ 18895-97.

Результаты испытаний спектрального анализа гиба и механические свойства стали 20 приведены в таблице 1 и таблице 2 соответственно. Механические характеристики образца гиба (поврежденного) незначительно отличаются от характеристик, приведенных в таблице 2, следовательно не происходит существенного изменения свойств.

В настоящее время одной из главных причин, возникающих в процессе эксплуатации, является обеспечение надежности необогреваемых гибов, по которым транспортируется котловая и питательная вода. При повреждении гибов происходит прекращение работы энергоблока. Необогреваемые гибы подвержены многочисленным дефектам, таким как:

- · коррозионные язвы;
- · трещины;

- отслоение;
- · ползучесть металла;
- утонение металла.

Перечисленные дефекты, обнаруженные на внутренней поверхности гиба являются недопустимыми.

Из литературных источников известно, что одной из основных причин повреждаемости на внутренней поверхности гибов является коррозия в сочетании с механическими напряжениями. Во время эксплуатации под воздействием коррозионной среды и высоких напряжений происходит их рост и выстраивание вдоль оси трубы с формированием трещин. Основным фактором, способствующим ускоренному коррозионно-усталостному повреждению металла гибов, могут являться отклонения водно-химического режима котловой воды во время эксплуатации котлов и технологические дефекты в виде рисок, царапин на внутренней поверхности гибов, способствующие развитию пластической деформации и разрушению магнетитового слоя [3]. При проведении визуально-измерительного контроля поврежденного гиба были обнаружены следующие дефекты:

- в растянутой зоне коррозионные дефекты в виде отдельных язв сферической формы диаметром до 2 мм и глубиной до 3 мм и слившихся в цепочку коррозионные язвы, глубиной до 1,5 мм. Их плотность достигает 1,17 шт./см². Глубина коррозионных язв на внутренней поверхности исследуемого гиба составляет 30%, dчто превышает допустимые нормы не более 20% от номинальной толщины стенки трубы;
- · коррозионно-усталостные образуются растрескиванием металла вдоль нейтральной зоны гиба (рис.1). Поперечное сечение гиба показано на макрошлифе (рис.2).

 Таблица 1.

 Результаты испытаний спектрального анализа гиба

Наименование	Норма по НД	Фактически Полученные	
показателя	ГОСТ 1050-2013		
		результаты	
Массовая доля углерода	0,17-0,24 %	0,23 %	
Массовая доля кремния	0,17-0,37 %	0,18 %	
Массовая доля марганца	0,35-0,65 %	0,46 %	
Массовая доля хрома	не более 0,25 %	0,088 %	
Массовая доля молибдена	-	0,027 %	
Массовая доля никеля	не более 0,30 %	0,129 %	
Массовая доля алюминия	-	0,019 %	
Массовая доля кобальта	-	0,019 %	
Массовая доля меди	не более 0,30 %	0,191 %	
Массовая доля ниобия	-	0,006 %	
Массовая доля титана	-	0,001 %	
Массовая доля ванадия	-	0,004 %	
Массовая доля волеьфрама	-	0,025 %	
Массовая доля свинца	-	0,010 %	
Массовая доля циркония	-	0,002 %	
Массовая доля серы	не более 0,035 %	0,018 %	
Массовая доеля фосфора	не более 0,030 %	0,021 %	

Таблица 2.

Механические свойства стали 20

Марка стали	Механические свойства, не менее				
	Предеел	Врееменное	Оте	Отеносительное	
	текучеести	сопротеивление	носительное	сужение ψ	
	$\sigma_{\rm T}H/{\rm MM}^2~({\rm KFC/MM}^2)$	разрыву	удлиненеие δ		
		$\sigma_{\rm B}H/{\rm mm}^2({\rm KFC/mm}^2)$	%		
20	245(25)	410(42)	25	55	

Образование коррозионных трещин связано с нарушением целостности защитной окисной пленки.

При проведении металлографического анализа было выявлено, что металл гибов диаметром 133х13 мм имеет ферритно-перлитную структуру с содержанием перлитной составляющей около 30%. Величина зерна исследуемого гиба соответствует баллу 5-6 по стандартной шкале зернистости [2]. На рисунке 3 показан характер трещин, развивающихся с внутренней поверхности нейтральной зоны гиба.

Рисунок 1. Коррозионно-усталостные трещины

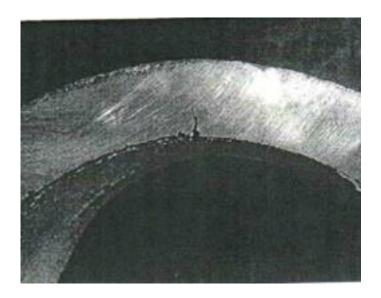


Рисунок 2. Поперечное сечение гиба

Рисунок 3. Характер трещин, развивающихся с внутренней поверхности нейтральной зоны гиба

По-видимому, основной причиной повреждений на внутренней поверхности гибов является коррозия в сочетании с механическими напряжениями. Кроме этого, фактором, способствующим ускоренному коррозионно-усталостному повреждению металла гибов, могло быть отклонение водно-химического режима котловой воды во время эксплуатации котлов.

Таким образом, проведенные исследования поврежденного гиба позволили выявить дефекты и определить характер образовавшихся коррозионных трещин.

Список литературы:

- 1. Бееляев С.А., Литвак В.В., Солод С.С. Надежность теплоэнергетического оборудования ТЭС. Томск: Изд-во НТЛ, 2008. 218 с.
- 2. Смирнов, А. Н. Комплексныей подход к оценке работоспособности элементов энергетического оборудования / А. Н. Смирнов, Н. В. Абабков //Известия Самарского научного центра РАН, 2010. Т. 12. №1 (2). С. 520-524.
- 3. Балашов Ю.В., Федотов В.П. Прогнозирование развития коррозионно-усталостных тре-щин в необогреваемых элементах паровых котлов//Повышение эффективности тепло-энергетического оборудования: Материалы III Всеросс. научно-практической Иваново, 2002, С. 95 -98.
- 4. ОСТ 34-70-690-96. Стандарт отрасли. Метод металлографического анализа в условиях эксплуатации. М., 1997.