

АНАЛИЗ НАПРАВЛЕНИЯ ПРИХОДА КОСМИЧЕСКИХ ЛУЧЕЙ СВЕРХВЫСОКИХ ЭНЕРГИЙ ПО ДАННЫМ ЯКУТСКОЙ УСТАНОВКИ ШАЛ

Анемподистова Любовь Гаврильевна

магистрант, Физико-технический институт, Северо-Восточный федеральный университет им. М.К. Аммосова, РФ, г. Якутск

Analysis of the direction of the arrival of cosmic rays of ultrahigh energies according to the Yakut installation EAS

Lyubov Anempodistova

graduate student, Institute of Physics and Technologies, M.K. Ammosov North-Eastern Federal University, Russia, Yakutsk

Аннотация. Вопрос об источниках космических лучей сверхвысоких энергий относится к области исследований на стыке астрофизики и физики элементарных частиц. Факт ускорения частиц до экстремальных энергий в определенных астрофизических объектах дает весьма ценную информацию о физических условиях в них. Целью является определение направления прихода космических лучей сверхвысоких энергий по данным Якутской комплексной установкой ШАЛ им. Д.Д. Красильникова методом гармонического анализа по прямым восхождениям.

Abstract. The question of sources of ultra-high energy cosmic rays belongs to the field of research at the intersection of astrophysics and elementary particle physics. The fact that particles accelerate to extreme energies in certain astrophysical objects provides very valuable information about the physical conditions in them. The aim is to determine the direction of the arrival of cosmic rays of ultrahigh energies according to the Yakut complex installation of EAS named after D.D. Krasil'nikov method of harmonic analysis on the direct route.

Ключевые слова: космические лучи; широкие атмосферные ливни; частица сверхвысокой энергии; гармонический анализ.

Keywords: cosmic rays; extensive air showers; ultra-high energy particle; harmonic analysis.

Одним из основных вопросов при исследовании гигантских широких атмосферных ливней (ШАЛ) является определение энергии первичных частиц. Энергетический спектр первичных космических лучей сверхвысокой энергии получают из спектра ШАЛ по числу частиц в предположении, что существует связь между энергией и числом частиц. Такую связь обычно выявляют из теоретических расчетов, основанных на модели развития ШАЛ, в результате оценки зависит от используемой модели. На гигантских установках обычно регистрируется не число частиц, а их плотность на некоторых расстояниях от оси ливня.

Для более надежного определения параметров ливня в ЭВМ были заложены следующие критерии отбора событий: 1) зенитный угол ливня $e^{(60^\circ)}$ (2) оси ливней расположены внутри периметра установки; 3) на каждой из трех станций, образующих треугольник, плотность частиц $e^{(60^\circ)}$ (2) м-2.

Отобрав таким образом ливни, мы распределяем их по энергетическим интервалам и по небесным координатам.

^{Ливни с} $E_0 \ge 4,5*10^{19}$ _{эВ преимущественно идут со стороны высоких галактических широт.}

Данные с сайта Якутской комплексной установки ШАЛ имени Д.Д.Красильникова (за период времени 1974 - 2004 гг.).

Таблица 1.

Список событий прихода космических лучей с энергией E > 4x10¹⁹ эВ, регистрированных Якутской комплексной установкой ШАЛ

į.					
l	#	E10	Thata	РΛ	Dec
	1	E19 5.40	Theta 41.7	RA 163.6	Dec 52.9
	2	7.00	52.2	183.3	35.6
	3	4.20	41.4	235.1	23.1
	4				
		11.0	46.1	150.7	16.1
	5	6.40	22.8	270.3	67.6
	6	5.30	43.1	297.7	33.5
	7	4.20	10.3	43.2	57.4
	8	5.30	37.3	47.9	24.9
	9	4.50	32.5	302.8	70.2
	10	5.40	32.8	46.9	29.2
	11	4.80	32.6	85.1	63.3
l	12	4.40	11.2	343	65.8
	13	6.40	23.8	184.1	47
	14	8.20	44.9	55.7	19.6
	15	6.80	20.4	335.2	51
	16	6.20	48.7	297.3	45.2
l	17	4.60	51.1	218.1	50.4
l	18	4.10	54.9	8.7	36.3
l	19	4.40	36.9	167.8	78
l	20	5.60	23.9	108.9	37.8
	21	15.0	58.7	75.2	45.6
	22	4.00	58.5	23.8	57.5
	23	6.50	49.1	283.5	29.4
	24	4.60	29.3	119.6	37.3
	25	7.50	34.2	69.1	74.8
	26	8.50	55.7	131.3	60.6
	27	6.20	41	92.6	74
	28	5.60	27.4	315	57.8
	29	4.90	16.1	21.3	45.7
	30	4.90	12.3	58.1	60.9
	31	5.30	20.6	274.3	54.5
	32	4.90	26.2	351	72.9

Где в первом столбце - порядковые номера регистрации космических лучей с энергией Е >

4х 10^{19} эВ, во втором – энергии космических лучей, умножаемые на 10^{19} эВ, в третьем – зенитные углы, четвертом – прямые восхождения, пятом – склонения.

Определение направления прихода космических лучей сверхвысоких энергий методом гармонического анализа по прямому восхождению (расчеты сделаны на Excel):

*Таблица 2.*Первая гармоника

				первая гармоника							
Nº	RA, град	E19	RA, рад	a_1i	b_1i	A_1	фаза_1	P(≥A_1)			
18	8,7	4,1	0,151844	0,058147	0,008898						
29	21,3	4,9	0,371756	0,054805	0,021368						
22	23,80	4	0,415389	0,053821	0,023738						
7	43,2	4,2	0,753984	0,04288	0,040268						
10	46,9	5,4	0,818561	0,040192	0,042951						
8	47,9	5,3	0,836015	0,039437	0,043646						
14	55,7	8,2	0,972151	0,033148	0,048594						
30	58,1	4,9	1,014039	0,031084	0,04994						
25	69,1	7,5	1,206025	0,020984	0,054953						
21	75,2	15	1,312491	0,015026	0,056872						
11	85,1	4,8	1,485279	0,005024	0,058609						
27	92,6	6,2	1,616179	-0,00267	0,058763						
20	108,9	5,6	1,900668	-0,01905	0,055652						
24	119,6	4,6	2,087419	-0,02906	0,051147						
33	128,7	5	2,246244	-0,03678	0,045907						
26	131,3	8,5	2,291623	-0,03882	0,044192						
4	150,7	11	2,630217	-0,0513	0,028787						
1	163,6	5,4	2,855365	-0,05643	0,016608						
19	167,8	4,4	2,928669	-0,0575	0,01243						
2	183,3	7	3,199196	-0,05873	-0,00339						
13	184,1	6,4	3,213159	-0,05867	-0,00421						
34	191	6,4	3,333587	-0,05774	-0,01122						
17	218,1	4,6	3,806572	-0,04629	-0,0363						
3	235,1	4,2	4,103279	-0,03366	-0,04824						
5	270,3	6,4	4,717636	0,000309	-0,05882						
31	274,3	5,3	4,787449	0,004411	-0,05866						
23	283,5	6,5	4,94802	0,013733	-0,0572						

16	297,3	6,2	5,188876	0,02698	-0,05227			
6	297,7	5,3	5,195857	0,027344	-0,05208			
9	302,8	4,5	5,284869	0,031866	-0,04944			
28	315	5,6	5,4978	0,041595	-0,04159			
15	335,2	6,8	5,850357	0,053399	-0,02467			
12	343	4,4	5,986493	0,056253	-0,0172			
32	351	4,9	6,12612	0,058099	-0,0092			
				0,161848	0,238821	0,288496	55,87450729	0,492896172

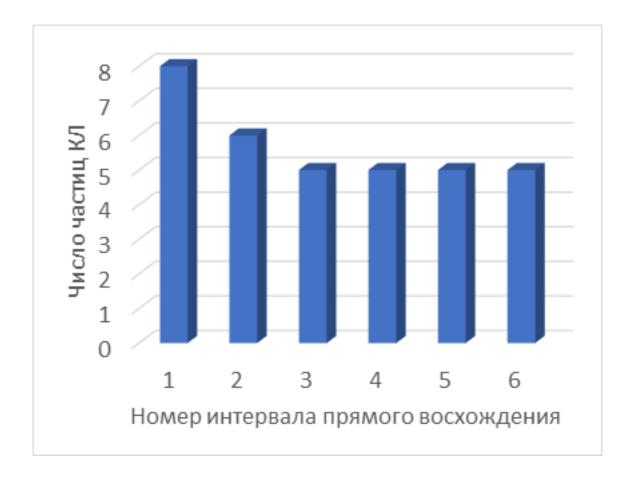
Таблица 3. Вторая гармоника

				вторая га	армоника			
Nº	RA, град	E19	RA, рад	a_2i	b_2i	A_2	фаза_2	P(≥A_2)
18	8,7	4,1	0,151844	0,056132	0,017591			
29	21,3	4,9	0,371756	0,0433	0,039816			
22	23,80	4	0,415389	0,039665	0,043439			
7	43,2	4,2	0,753984	0,003693	03 0,058707			
10	46,9	5,4	0,818561	-0,0039	0,058694			
8	47,9	5,3	0,836015	-0,00594	0,058522			
14	55,7	8,2	0,972151	-0,02146	0,054768			
30	58,1	4,9	1,014039	-0,02597	0,05278			
25	69,1	7,5	1,206025	-0,04385	0,039208			
21	75,2	15	1,312491	-0,05115	0,029055			
11	85,1	4,8	1,485279	-0,05797	0,010012			
27	92,6	6,2	1,616179	-0,05858	-0,00533			
20	108,9	5,6	1,900668	-0,04648	-0,03605			
24	119,6	4,6	2,087419	-0,03012	-0,05053			
33	128,7	5	2,246244	-0,01283	-0,05741			
26	131,3	8,5	2,291623	-0,00758	-0,05833			
4	150,7	11	2,630217	0,030648	-0,05021			
1	163,6	5,4	2,855365	0,049446	-0,03186			
19	167,8	4,4	2,928669	0,05357	-0,0243			
2	183,3	7	3,199196	0,058434	0,006762			
13	184,1	6,4	3,213159	0,058222	0,008391		1	
34	191	6,4	3,333587	0,05454	0,022037		1	
17	218,1	4,6	3,806572	0,01403	0,057126			

3	235,1	4,2	4,103279	-0,02031	0,055205			
5	270,3	6,4	4,717636	-0,05882	-0,00062			
31	274,3	5,3	4,787449	-0,05816	-0,0088			
23	283,5	6,5	4,94802	-0,05241	-0,02671			
16	297,3	6,2	5,188876	-0,03407	-0,04795			
6	297,7	5,3	5,195857	-0,0334	-0,04842			
9	302,8	4,5	5,284869	-0,0243	-0,05357			
28	315	5,6	5,4978	1,51E-06	-0,05882			
15	335,2	6,8	5,850357	0,038126	-0,0448			
12	343	4,4	5,986493	0,048768	-0,03289	_		_
32	351	4,9	6,12612	0,055945	-0,01818			
				-0,04279	-0,04266	0,060425	44,91398	0,969442

Из таблиц видно: амплитуда первой гармоники равна 28,90%, второй 6,00%; фаза первой - 55.9 градусов, второй 44.9 градусов; вероятность случайности получения амплитуды больше,

чем $\mathbf{A}_{\mathbf{k}}$ первой - 49,30%, второй -96,90%. Так как вероятности случайности больше 1%, наблюдаемые амплитуды первой и второй гармоники согласуются с изотропным распределением при $\mathrm{E}>4*10^{19}$ эВ.


 Таблица 4.

 Распределении космических лучей по прямому восхождению

	Интервалы RA								
NΩ	ниж <mark>няя граница</mark>	верхняя граница	середина	Ni	Ошибка	Ожидаемое	ср. число	Отклонение	
1	0	60	30	8	2,83	5,67		2,33	
2	60	120	90	6	2,45			0,33	
3	120	180	150	5	2,24			-0,67	
4	180	240	210	5	2,24			-0,67	
5	240	300	270	5	2,24			-0,67	
6	300	360	330	5	2,24			-0,67	
				34				Все откл. меньше	статошибки

Таблица 5.

Наблюдаемое распределение космических лучей по прямому восхождению

Заключение

В статье была рассмотрена тема прихода космических лучей сверхвысокой энергии. Сделан анализ направлений прихода космических лучей методом гармонического анализа, регистрированных Якутской комплексной установкой ШАЛ.

Метод поиска анизотропии по галактической широте является важным для решения вопросе о природе частиц сверхвысоких энергий.

Распределение частиц по широте при 10^{18} – 10^{19} эВ указывает скорее всего на их галактическое происхождение.

Список литературы:

1. В.П. Артамонов, Б.Н. Афанасьев, А.В. Глушков, В.П. Григорьев, М.Н. Дьяконов, Т.А. Егоров, В.П. Егорова, Н.Н. Ефремов, А.А. Иванов, А.П. Кангаласов, С.П. Кнурен-ко, В.А. Колосов, В.Д. Корякин // Современное состояние и перспективы якутской ком-плексной установки ШАЛ – 1994 г.

2. http://eas.ysn.ru/catalog/yakutsk-array-data / (дата обращения: 14.09.18)