

ИССЛЕДОВАНИЕ ОПТИМАЛЬНОЙ РЕЦЕПТУРЫ БИОДИЗЕЛЬНОГО ТОПЛИВА

Рычагова Марина Александровна

магистрант, Московский Политехнический Университет, РФ, г. Москва

Систер Владимир Григорьевич

научный руководитель, чл.-корр. РАН, д-р. техн. наук, профессор, Московский Политехнический Университет, РФ, г. Москва

Аннотация. По прогнозам информационных источников, ожидается тенденция к снижению производства и использования традиционных источников энергии. Одним из возможных вариантов решения данной проблемы является использование биодизельного топлива. Производство биодизельного топлива в последнее время набирает обороты во всем мире. Это связано с тем, что биодизельно топливо является возобновляемым источником энергии. Подобрать правильный и более экологический метод производства биодизельного топлива – важная задача на сегодняшний момент. Когда биодизельное топливо получит наилучшую технологию производства, тогда все больше стран присоединятся к его использованию.

Ключевые слова: биодизельное топливо, альтернативное топливо, антикоррозионная эффективность, дизельное топливо, цетановое число

Дизельные топлива и биотоплива, производимые на современных нефтеперерабатывающих заводах, не являются чистыми прямогонными продуктами, а получаются смешением различных фракций, присадок и добавок в процессе компаундирования.

При этом, экспериментальное определение ключевой эксплуатационной характеристики товарных дизельных топлив и биотоплив – цетанового индекса является крайне сложным и дорогостоящим процессом.

Для разработки оптимальных рецептур смешения дизельных топлив необходима разработка точных и надежных расчетных методов определения цетановых индексов смесевых дизельных топлив.

У топлива содержащих цетановышающие присадки при хранении ухудшаются такие показатели качества как: окислительная стабильность, цвет, коксуемость, кислотность, увеличивается содержание пероксидов.

Основываясь на данных результатах можно предположить, что целесообразно повышать цетановое число, корректируя рецептуры смешения и учитывая неаадитивность данной величины, а не применять цетаноповы-шающие присадки.

При изучении различных композиций присадок с помощью метода моделирования и лабораторных испытаний можно подобрать наиболее оптимальный состав исходных компонентов для производства смесевого дизельного топлива.

А также можно доказано, что дизельное топливо класса ЕВРО-2 можно получать без

использования цетаноповышающих присадок. Рецептуры получения дизельного топлива приведены в таблице 1.

 Таблица 1.

 Рецептуры смешения товарных дизельных топлив

Компонент	Базовый состав топлива, % мас	
	Без присадок	С добавлением присадок
Гидроочищенная фракция К-301	55	25,1
Гидроочищенная фракция куба К-301	20,1	61,4
Прямогонная керосиновая фракция из K-103/1	20,9	4,9
Дизельная фракция из К-103/2	4	8,6

Еще одним направлением развития производства является использование биотоплива в качестве смесевого компонента. Добавление биотоплива в традиционное топливо улучшает смазывающие свойства, повышает цетановое число, а также улучшает антикоррозионные свойства последнего (табл. 2).

Таблица 2. Результаты оценки антикоррозионной эффективности композиций дизельного топлива с добавлением биотоплива

Состав композиции	Степень коррозии, г/м ²	Эффективность защиты, %
Дизельное топливо	24,9	I
Дизельное топливо + 5,0%	-	100
Дизельное топливо + 3,0%	-	100
Дизельное топливо + 1,0%	-	100
Дизельное топливо + 0,5%	0,19	99,2
Дизельное топливо +0,1%	0,5	98

Список литературы:

- 1. Ибатов, М. Совершенствование методов снижения загрязнения атмосфе-ры вредными выбросами автотранспорта / м. Ибатов //Современные про-блемы науки и образования 2013. № 3 C.42-44.
- 2. Систер В.Г., Иванникова Е.М., Ямчук А.И. Технологии получения биодизельного топлива // Известия МГТУ «МАМИ». №3 (17). 2003. т. 2. с. 109 112.
- 3. Иванникова Е.М., Систер В.Г., Нагорнов С.А. Альтернативные топлива для дизельных двигателей. Учебное пособие. М.: ООО «Изд. АГРОРУС». 2014 г. 186 с.
- 4. Гапонов, В. Л. Современные методы снижения вредных выбросов с отработавшими газами автотранспорта / В. Л. Гапонов// Технологии техносферной безопасности 2008. № 11 С. 8-9.