DOPYM

nauchforum.ru

C[. HAVYHbINA Hayunsiit xxypHan «CtygeHdeckui popym» BIIIYCK Nel2(105)
53

PYTHON IS SLOW

Pasyuta Maxim

Student, Altai State Technical University. I.I. after Polzunov, Russia, Barnaul
Petrushova Natalia

senior lecturer, Altai State Technical University. I.I. after Polzunov, Russia, Barnaul

Python is a universal programming language using which you can create projects for any platform.
You can build web applications, do data analysis, automate system management tasks and more.
This article discusses the implementation of the CPython interpreter [1]. According to many
developers Python projects work many times slower than similar software solutions in other
languages. Let's try to figure it out and consider the main features of the Python programming
language which can affect the speed of the program:

e GIL thread lock operation (Global Interpreter Lock, global interpreter lock) [1].
e Python is an interpretive rather than a compiled language [3].
e Python is a language with dynamic typing [2].

First, let's talk about what is GIL (Global Interpreter Lock). GIL is closely related to stream
functioning. Modern computers have multi-core processors, and sometimes even are multi-
processor systems. To use all of this computing power the operating system uses low-level
structures called threads and processes (MATLAB program process) that can run multiple threads
and use them appropriately. As a result, for example, if a particular process requires a lot of
processor resources, its execution can be distributed across several cores. Thanks to this method,
most applications increase productivity when running a program. Locks are used for multi-threaded
applications. The key is that they allow such a system to protect memory while simultaneously
accessing two streams (read or write) to the same cell. In Python, it is GIL that is responsible for
protecting the memory of the interpreter from destruction. It implements this task by dividing all
memory operations into atomic ones.

Python is an interpreted programming language. You often hear that the poor performance of
Python is related to the peculiarity of building projects. Such statements are based on a gross
simplification of how CPython actually works. If you run any program with the extension .py,
CPython will begin a long sequence of actions which consists in reading, lexical analysis, parsing,
compiling, interpreting and executing script code. As an example, consider the simplest
multiplication function which will take 2 numbers as parameters and return their product. A
function, like everything else in Python, is an object, and by importing it, we can list its methods
using the dir () function. One of the attributes of the function is code , which contains a code
object - an object that wraps the written code. This object has a co code method that returns the
bytecode generated by Python for this function (i.e. instructions for the Python interpreter). To
bring the bytecode into readable form (i.e., to disassemble), the dis.dis () function from the dis
package is used.

Pasyuta M., Petrushova N. Python is slow // CmydeHuecKkul ¢popyM: 34eKMpPoH. HayuH. HcypH. 2020. Ne 12(105). URL:
https://nauchforum.ru/journal/stud/105/68651 (0ama obpaweHus: 29.08.2025).

@ LOAD FAST @ (a)
2 LOAD FAST 1 (b)
4 BINARY MULTIPLY

6 RETURN_ VALUE

Figure 1. Executing the dis.dis (multiply) command

This is applied not only to the scripts that we write, but also to the imported code of third-party
modules. As a result, most of the time (if you do not write code that runs only once), Python will
execute the finished bytecode. In figure -1 we see that the function is converted into a cycle of four
instructions. Each of these instructions contains a specific action. The first is LOAD FAST which
modifies the contents of a variable in memory and pushes it on the stack. When the ‘a’ variable is
pushed onto the stack, we switch to a similar command for the ‘b’ variable. The following
statement, BINARY MULTIPLY, tells the Python interpreter to take the top two values on the stack
and multiply them. Please note that we can pass a value of any type to a function: an integer, a real
number or a string, this bytecode does not change this. Object typing begins when Python executes
an instruction. In this case, when the BINARY MULTIPLY statement is executed, Python looks at
the type of the object and, for example, if it is two integers, multiplies two integers. Next, the result
of the multiplication is placed on the top of the stack. And the last statement is RETURN VALUE
which returns a variable from the top of the stack. This applies not only to the scripts that we write,
but also to the imported code of third-party modules. As a result, most of the time (if you don’t
write code that runs only once), Python will execute the finished bytecode.

Python is a dynamically typed programming language. Unlike static typed languages, Python does
not need to declare a variable type when creating it. Languages with dynamic typing include
Objective-C, Ruby, PHP, Perl, JavaScript. In these programming languages the concept of data
types has the same meaning as in classical C, but the type of the variable is dynamic. This
mechanism is implemented as follows. The types of variables are unknown until they have specific
values at startup. Type checking and conversion are complex operations. Each time a variable is
accessed, read, or written, a type check is performed. Because of this the speed of applications
suffers significantly.

In conclusion I want to note that the reason for the poor performance of Python is its dynamic
component, as well as its versatility. Initially this programming language was conceived by the
mathematician Guido van Rossumas a simple and expressive language. The creator of Python
wanted to introduce to the world a universal tool that avoids complex coding structures. He wanted
to implement a programming language in which the program code would be read like regular
English.

CIMCOK uTeparypsbl:

1. Kak yctpoeH GIL B Python [OnekTpoHHEIN pecypcl. - O1eKTpoH. faH. - 3arjaBue C 9KpaHa. -
Pexum moctyma: URL: https://habr.com/ru/post/84629/ (mata obparrenus: 15.03.2020).

2. CtaTuyeckas U OUHaMH4YeCKas TUNU3AIUs [OIeKTPOHHBIN pecypc]l. - OIeKTPoH. OaH. - 3arjiaBue
C 9KpaHa. - Pexxum goctyma: URL: https://habr.com/ru/post/308484/ (naTa obparenus: 15.03.2020).

3. OCHOBHBIE TIPUHIIUITEI TPOTPAMMUPOBAHMS: KOMIIUIUPYEMBIE U UHTEPIIPETUPYEMEIE SI3BIKU
[OneKTpOHHBIN pecypc]. - DNeKTPOoH. OaH. - 3arjaBue C 9KpaHa. - Pexum goctyna: URL:
https://tproger.ru/translations/programming-concepts-compilation-vs-interpretation/ (gata
obparenus: 15.03.2020).

http://www.tcpdf.org

