

СВОЙСТВА ФИЛЬТРУЮЩЕГО МАТЕРИАЛА ИЗ ВТОРИЧНОГО СТЕКЛА

Паранюшкина Екатерина Денисовна

магистрант Самарского государственного технического университета, РФ, г. Самара

Черносвитов Михаил Дмитриевич

доцент Самарского государственного технического университета, РФ, г. Самара

PROPERTIES OF FILTER MATERIAL FROM RECYCLED GLASS

Ekaterina Paranyushkina

Undergraduate Samara State Technical University, Russia, Samara

Mikhail Chernosvitov

Docent, Samara State Technical University, Russia, Samara

Аннотация. Рассмотрены различные способы фильтрования с использованием вторичного стекла и их производных. Влияние размеров частиц на пропускную способность фильтрования. Определены оптимальные фильтрующие материалы для определенного состава очищаемой воды.

Abstract. Consideration of various filtering methods using recycled glass and their derivatives. The effect of particle size on filtering capacity. Determination of the optimal filter material for a specific composition of the treated water.

Ключевые слова: фракционный состав, фильтрующий материал, фильтр из стекла, вторичное стекло, водоочистка, фильтр, фильтрующая загрузка.

Keywords: fractional composition, filter material, glass filter, secondary glass, water treatment, filter, filter load.

Битая посуда, лампочки, оконные стекла, пустые бутылки и банки - отправляя всё это на помойку, практически никто не задумывается о том, что в природе этот мусор разложению не подлежит. Между тем, стекло прекрасно подвергается вторичной переработке, позволяя освобождать огромные площади на полигонах для хранения ТБО и не занимать новые.

Для изготовления стекла нужно большое количество песка, известняка и кальцинированной соды, чьи природные запасы не безграничны. Одна тонна битого стеклянного боя эквивалентна тонне природного сырья! В Европе об этом прекрасно знают, поэтому более 80 процентов битого стекла попадает в переработку [5, с.17].

Неорганическое стекло следует рассматривать как затвердевший раствор - сложный расплав высокой вязкости кислотных и основных оксидов. Стеклообразное состояние является разновидностью аморфного состояния вещества. Неорганические стекла характеризуются неупорядоченностью и неоднородностью внутреннего строения. Неорганические стекла подразделяют на технические (оптические, светотехнические, электротехнические, химиколабораторные, приборные, трубные), строительные (оконные, витринные, армированные, стеклоблоки) и бытовые (стеклотара, посудные, бытовые зеркала), что и определяет их назначение [1, с.84].

«Вторичное стекло» с успехом используется при производстве:

- керамической сантехники;
- фильтров из микростекловолокна и кварца для не очищенной воды содержащей мелкодисперсные частицы;
- кирпичей (в качестве флюсов);
- большого ассортимента абразивных материалов;
- как основа верхнего слоя покрытия площадок на спортивных объектах;
- изоляционных материалов.

Используя вторичное стекло при фильтрование воды фракционный состав фильтрующей загрузки и степень однородности размеров ее зерен влияют на эффективность работы фильтров. Применение более крупного фильтрующего материала приводит к снижению качества осветления воды, а более мелкого — к уменьшению продолжительности фильтроцикла и увеличению эксплуатационных затрат за счет быстрого прироста потерь напора в фильтре. При неоднородной фильтрующей загрузке ухудшаются условия ее промывки, так как в результате гидравлической сортировки мелкие фракции загрузки концентрируются на поверхности фильтрующегося слоя и при последующем фильтровании воды сверху вниз на поверхности образуется плотная пленка, способствующая быстрому нарастанию потерь напора. Для определения класса пористости фильтра по крупности зерен пользуются стандартами ISO приведенных в таблице 1 [3, с.26].

Минеральное волокно, как основное сырье для фильтровальных материалов, несет в себе уникальный потенциал для создания инертного материала, стойкого к температуре и крайним отклонениям значений рН среды. И вместе с тем существует возможность создания фильтровального материала по бумагоподобной технологии с высокопористой структурой для изготовления фильтрующего элемента, используемого в многообразных средствах и приборах очистки воздуха с длительным сроком эксплуатации. Одним из уязвимых мест таких фильтровальных материалов являются показатели прочности, здесь важно понимать влияние структурных характеристик по причине слабой бумагообразующей способности минеральных волокон.

Фильтрующие материалы применяются в различных вариантах исполнения для удаления твердых частиц из потоков текучих сред. Подлежащие удалению загрязнения в виде частиц нарушают ход промышленных процессов и ускоряют износ машин и оборудования. Кроме того, они могут ухудшать здоровье и самочувствие людей, которые употребляют такую воду. Такие фильтрующие материалы используются в фильтрующих элементах разных типов с целью формирования чаще всего многослойной фильтрующей среды. Соответствующие фильтрующие материалы предназначены не только для удаления частиц в текучих средах, но и, в частности, для устранения электрического потенциала среды. Обнаружилось, что при прохождении потока через фильтрующий материал фильтра может возникнуть разность потенциалов и, тем самым, произойти накопление электростатического заряда. Это может привести, например, к ускоренному старению гидравлической жидкости. Кроме того, нежелательные разряды могут повредить фильтрующий материал. Чтобы избежать этого, можно целенаправленно влиять на величину возникающего заряда и образующийся потенциал между фильтрующим материалом и средой за счет соответствующей конструкции фильтра и выбора подходящего материала [4, с.34].

Таблица 1.

Класс	Крупность зерен	Характеристика фильтра
00	250-500 мкм,	Очень грубый фильтр, проходит даже песок. Используетс
		жидкостях и как перегородка, например в колоннах для х
	0,25-0,5 мм	(цеолиты), ионного обмена. Такая пористость почти не в
0	160-250 мкм,	Менее грубый. Используется для тех же целей, что и с кл
		практике в отличии от фильтров с пористостью 00, впа
	0,16-0,25 мм	
1	100-160 мкм,	Фильтрование грубозернистых осадков. Особенно в
	0,1-0,16 мм	
2	40-100 мкм,	Самая распространенная пористость, большинство осадко
		таком фильтре.
	0,04-0,1 мм	
3	16-40 мкм,	Для более мелкозернистых осадков. На таком фильтре та
		ртуть.
	0,016-0,04 мм	
4	10-16 мкм,	Количественное фильтрование очень мелкозернистых осад
		Используется в ртутных клапанах (например, чтобы газ
	0,01-0,016 мм	поддерживалось определенное избыточное давление газа)
		грубых коллоидных растворов. Для ускорения процесса н
5	1-1,6 мкм,	В химическом эксперименте почти не встречается, иногда
		осадков. Основное назначение - разделение микроорганиз
	0,001-0,0016 мм	и воздуха. Для фильтрования воды требует заметный пере
		00 на практике встречается очень редко. Правильно впа
		фильтр с пористостью 4 очень сложно. Плохо пропаял -
		между диском фильтра и стенкой прибора. Хорошо про

Фильтры из микростекловолокна нашли применение в высокоэффективной фильтрации в осветление буферов и растворов, а так же при фильтрации твердых примесей в воде, анализе сточных вод. Могут использоваться в качестве префильтра к мембранному фильтру. Такие фильтры выдерживают высокую температуру при очистке загрязненной воды, задерживают мелкодисперсные белковых осадков.

Востребованность фильтров из вторичного стекла набирает все большую популярность, идут исследования в сторону улучшения показателей очистки воды и воздуха.

Процесс фильтрации воздушных сред относится к многофакторным процессам. На основании теоретических аспектов были выделены наиболее значимые группы факторов процесса фильтрации [2, с.19]. К первой группе можно отнести вид и свойства волокнистого сырья, используемого в материале при его изготовлении на бумагоделательной машине, т.к. загрязняющие частицы в потоке очищаемого воздуха взаимодействуют именно с волокнистым слоем фильтра. К другой группе не менее важных факторов процесса фильтрации относятся размер частиц и скорость потока воздуха. Можно утверждать, что размер частиц при захвате их фильтром напрямую зависит от размера волокон и пористости материала. Однако такой фактор, как скорость потока воздуха, влияет на эффективность (проницаемость), удержание частиц в фильтровальном материале независимо от их размера. Учитывая многообразие существующих механизмов фильтрации, зависящих от различных факторов, важной необходимостью для исследователей является установление научнообоснованного алгоритма проявления механизмов фильтрации, присущих фильтровальным материалам в зависимости от их класса эффективности очистки.

Список литературы:

1. Алексеев, Г. В. Виртуальный лабораторный практикум по курсу «Материаловедение» : учебное пособие/Г. В. Алексеев, И. И. Бриденко, С. А. Вологжанина. -Электрон. дан. -СПб.: Лань, 2013. -208 с.

- 2. Апкарьян А.С., Губайдулина Т.А., Каминская О.В. Фильтрующий материал многократного пользования для очистки питьевой воды от ионов железа и марганца на основе гранулированной пеностеклокерамики // Экология и промышленность России.- 2014.- 10.- С.18-21.
- 3. Вайсман Я.И., Кетов А.А., Кетов П.А. Вторичное использование пеностекла при производстве пеностеклокристаллических плит // Строительные материалы.- 2017.- №5.- C.56-59
- 4. Ефременков В. В., Субботин К. Ю. Особенности учета расхода собственного стеклобоя в производстве стеклянной тары // Стекло и керамика.- 2015.- 5.- С.32-35.
- 5. Кетов А.А. Нанотехнологии при производстве пеностеклянных материалов нового поколения // Нанотехнологии в строительстве: научный Интернетжурнал. www.nanobuild.ru. 2009.- №2.- C.15-23.