

СИНХРОННЫЙ ДВИГАТЕЛЬ КОЛЬЦЕВОЙ КОНСТРУКЦИИ ДЛЯ СИСТЕМЫ ЭЛЕКТРОДВИЖЕНИЯ, ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ НАГРУЗОК

Богданов Владислав Дмитриевич

магистрант Санкт-Петербургского Государственного Университета Аэрокосмического приборостроения, Институт инновационных технологий в электромеханике и робототехнике, РФ, г. Санкт-Петербург

Комендантов Андрей Юрьевич

магистрант Санкт-Петербургского Государственного Университета Аэрокосмического приборостроения, Институт инновационных технологий в электромеханике и робототехнике, РФ, г. Санкт-Петербург

Бурдин Роман Александрович

магистрант Санкт-Петербургского Государственного Университета Аэрокосмического приборостроения, Институт инновационных технологий в электромеханике и робототехнике, РФ, г. Санкт-Петербург

Давудян Артур Унанович

магистрант Санкт-Петербургского Государственного Университета Аэрокосмического приборостроения, Институт инновационных технологий в электромеханике и робототехнике, РФ, г. Санкт-Петербург

Юрченко Владислав Олегович

магистрант Санкт-Петербургского Государственного Университета Аэрокосмического приборостроения, Институт инновационных технологий в электромеханике и робототехнике, РФ, г. Санкт-Петербург

Модель, выбранная в качестве объекта исследований, является двигательно движительной системы кольцевой конструкции. Инновационным элементом конструкции является ротор совмещенный с гребным винтом.

Для определения механических нагрузок объекта исследований воспользуемся программной средой SolidWorks. Для проведения статического анализа воспользуемся добавлением SolidWorks Simulation. Модель для проведения статического анализа изображена на рисунке 1.

Рисунок 1. Модель для статического анализа

Для выполнения модели данного двигателя планируется использовать материал ABS. Исследование механических нагрузок будут проводиться с данным материалом. Данный материал обладает следующими свойствами: предел прочности по растяжению $3\cdot10^7\,\mathrm{H/m^2}$, модуль упругости $2\cdot10^9\,\mathrm{H/m^2}$, коэффициент Пуассона 0,394, массовая плотность 1020 кг/м³, модуль сдвига $3,189\cdot10^8\,\mathrm{H/m^2}$.

Для представленной модели зададим внешние нагрузки: сила тяжести 9.81 м/c^2 , вращающий момент 140 H*m, центробежная сила 31.4 рад/c, угловое ускорение 2 рад/c^2 . Также зададим жесткое крепление соответствующее ситуации механического сопротивления со стороны двигателя. На рисунках 2 и 3 представлены места задания внешних нагрузок, на рисунке 4 место жесткого крепления.

Рисунок 2. Зона приложения центробежной силы

Рисунок 3. Зона приложения вращающего момента

Рисунок 4. Зона жесткого крепления

После задания всех свойств и внешних нагрузок можно переходить к построению сетки и дальнейшему выполнению статического анализа. На рисунке 5 представлена сетка модели.

Рисунок 5. Сетка модели

Результатами статического анализа будет напряжение, деформация и перемещение в данной модели.

Список литературы:

- 1. SolidWorks 2016: Краткий обзор программы: [сайт]. URL: https://3ddevice.com.ua/blog/reviews/obzor-programmy-solidworks/
- 2. Основные принципы SolidWorks Simulation: [сайт]. URL: http://help.solidworks.com/2013/RUS SIAN/SolidWorks/Cworks/c SolidWorks Simulation Fundamentals.htm
- 3. Удельная теплоемкость стали распространенных марок: [сайт]. URL: http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/teploemkost-stali
- 4. Теплопроводность: [сайт]. URL: https://www.calc.ru/125.html

5. Копылов И.П. Проектирование электрических машин: учебное пособие для студентов. М.: Энергия,1980, с.488