

ДИСТИЛЛИРОВАННАЯ И АПИРОГЕННАЯ ВОДА, ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ В ФАРМАЦИИ

Митина Анастасия Сергеевна

студент, Омский государственный медицинский университет, РФ, г. Омск

Носырева Александра Игоревна

студент, Омский государственный медицинский университет, РФ, г. Омск

Макарова Ольга Александровна

научный руководитель, канд. биол. наук, доцент, Омский государственный медицинский университет, РФ, г. Омск

Аннотация. Очищенная (дистиллированная) вода — вода для изготовления лекарственных форм. В зависимости от задач приготавливается вода разной степени очистки. Практически все инъекционные растворы изготавливают на базе апирогенной воды для инъекций с применением различных лекарственных и вспомогательных веществ, которые не содержат пирогенов.

Ключевые слова: Дистиллированная вода, очищенная вода, апирогенная вода, фармацевтическая технология, растворы.

Вода – один из наиболее важных соединений в природе. Она является хорошим растворителем и применяется во многих сферах жизни: ее используют как сырье, ингредиент в процессах технологической обработки и производстве, а также как компонент в составе лекарственных препаратов, активных фармацевтических ингредиентов (АФИ), аналитических реактивов. Вода является основой для протекания всех обменных процессов в человеческом организме.

Потребность в очистке воды возникла еще в Древнем Риме, и на данном этапе развития очищенная вода уже используется во многих отраслях жизни. Дистиллированная вода имеет особое значение в производстве фармацевтических предприятий: она широко используется в качестве вспомогательного вещества в составе лекарственных средств, самого лекарственного средства, а также в различных технологических процессах – приготовлении дезинфицирующих растворов и т.д. Дистиллированная вода является наиболее широко используемым растворителем при изготовлении лекарств и ее качество нормируется специальной статьей ГФХ. Главным её преимуществом является то, что она не обладает фармакологической активностью, не вступает в химическое взаимодействие с лекарственными веществами. Вода совместима со многими субстратами, при растворении которых создаются оптимальные условия для проявления их максимальной эффективности.

Важно отметить, что в настоящее время дистиллированную воду называют очищенной, так как этот термин исключает определение способа получения воды и устанавливает общие требования к ее качеству. Для воды очищенной имеется ряд требований: pH должен быть в пределах 5-7, отсутствие в составе хлоридов, сульфатов, нитратов, восстанавливающих веществ, кальция, диоксид углерода, тяжелых металлов.

В простой дистиллированной воде могут содержаться пирогенные вещества, которые, попадая в организм, способны повышать температуру тела и вызывать другие болезненные реакции, а при их высоком содержании даже приводить к летальному исходу; тогда она не может быть использована как составляющая инъекционных растворов. Поэтому в приготовлении инъекционных растворов используется вода, которая не содержит пирогенных веществ - апирогенная вода. Апирогенность воды для инъекций, водных растворов лекарственных веществ для инъекций является очень важным условием, которое зафиксировано в Государственной фармакопее.

Также она необходима в производстве в областях биотехнологии, микроэлектроники, для испытаний в химических, биологических, физических и прочих лабораториях. Так, для фармакологии требуется апирогенная вода высочайшей очистки, пригодная для взаимодействия с человеческой кровью. [4, с.60]

Получение. Перед получением возникает необходимость проведения водоподготовки, что предполагает ее освобождение от летучих веществ, от аммиака, от механических примесей, от постоянной и временной жесткости, от органических веществ. Для этого наиболее часто применяют такие методы как электромагнитная обработка, электродиализ, фильтрование, отстаивание, кипячение и др.

Воду очищенную получают из питьевой воды методами дистилляции, ионного обмена, обратного осмоса.

Методом дистилляции используют специальный прибор - аквадистиллятор, который перед началом работы тщательно пропаривают. Он осуществляет выпаривание воды из исходной путем нагрева до кипения с дальнейшей конденсацией водяного пара и получением дистиллята с температурой в пределах от 40°C до 85°C.

Полученную дистиллированную воду собирают в чистые простерилизованные сборники промышленного производства, которые изготовлены из материалов, не изменяющих свойства воды и защищающих ее от инородных частиц и микробов. Сборники плотно закрывают пробками с двумя отверстиями: одно для трубки, по которой поступает вода, другое для стеклянной трубки, в которую вставляется тампон из стерильной ваты. [1, с. 260]

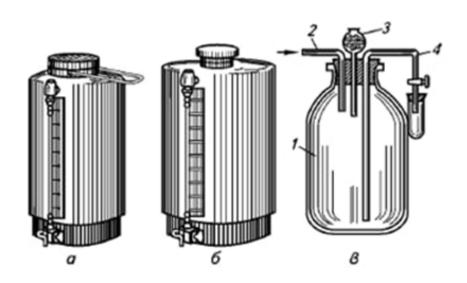


Рисунок 1. Сборники воды:

а – С-16; б – С-40; в – стеклянный: 1 – бутыль; 2 – трубка для конденсата; 3 – хлоркальциевая трубка; 4 – трубка для забора воды

Предпочтительным и наиболее экономичным методом считают ионный обмен или обратный осмос.

Метод обратного осмоса основан на явлении осмоса, но направление движения чистой воды изменено на обратное, т. е. от более соленого раствора в сторону более чистого. Установка обратного осмоса состоит из насоса высокого давления, одного или нескольких пермиаторов и блока регулирования, поддерживающего оптимальный рабочий режим. Каждый из пермиаторов содержит большое количество полых волокон (мембран). Воду подают в пермиатор, омывая волокна с внешней стороны. Под давлением выше осмотического она проникает внутрь полых трубок, т.е. уходит от солей, собирается внутри трубок, а «концентрат» солей выливается в сток. По ходу движения воды в пермиатор устанавливают угольный фильтр для удаления хлора. Методом обратного осмоса можно удалить более 90 % солей, высокомолекулярные вещества (ВМВ), бактерии и даже некоторые вирусы.

Рисунок 2. Схема прямого и обратного осмоса

Ионный обмен проводят в ионообменных установках, состоящих из колонок, заполненных смолами (полимерами). Принцип данного способа состоит в том, что подвижные ионы водорода или гидроксила полимера обмениваются на катионы или анионы солей. Причем, каждый килограмм смолы способен очистить до 1000 л воды и более. Качество воды контролируют по электропроводности. Как только ионит прекращает связывать ионы, электропроводность возрастает.

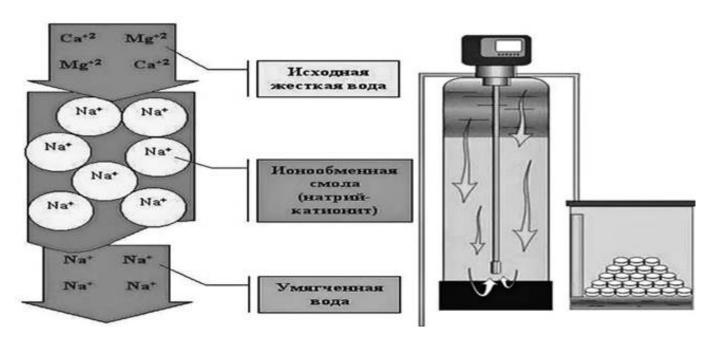


Рисунок 3. Схема ионного обмена

Для получения сверхчистой воды сочетают методы ионного обмена и обратного осмоса. [3, с. 467]

Качество воды очищенной зависит качества исходной воды, которое регламентировано СанПиНом и санитарными правилами и нормами, а также от используемой аппаратуры, соблюдения условий получения, сбора и хранения в соответствии с Инструкцией по санитарному режиму аптек. [2, с. 285]

Список литературы:

- 1. Гаврилов А.С., Фармацевтическая технология. Изготовление лекарственных препаратов [Электронный ресурс] / А.С. Гаврилов М. : ГЭОТАР-Медиа, 2016. 760 с. ISBN 978-5-9704-3690-5 Режим доступа: http://www.studmedlib.ru/book/ISBN9785970436905.html (дата обращения: 10.02.2021)
- 2. Краснюк И.И., Фармацевтическая технология. Технология лекарственных форм [Электронный ресурс]: учебник / И. И. Краснюк, Г. В. Михайлова, Л. И. Мурадова. М.: ГЭОТАР-Медиа, 2013. 560 с. ISBN 978-5-9704-2408-7 Режим доступа: http://www.studmedlib.ru/book/ISBN9785970424087.html (дата обращения: 10.02.2021)
- 3. Краснюк И.И., Фармацевтическая технология. Технология лекарственных форм [Электронный ресурс]: учебник / И. И. Краснюк, Г. В. Михайлова, Т. В. Денисова, В. И. Скляренко; Под ред. И. И. Краснюка, Г. В. Михайловой. М.: ГЭОТАР-Медиа, 2015. 656 с. ISBN 978-5-9704-3527-4 Режим доступа: http://www.studmedlib.ru/book/ISBN9785970435274.html (дата обращения: 12.02.2021)
- 4. Большаков А.М., Общая гигиена [Электронный ресурс]: учебник / А. М. Большаков. 3-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2016. 432 с. ISBN 978-5-9704-3687-5 Режим доступа: http://www.studmedlib.ru/book/ISBN9785970436875.html (дата обращения: 12.02.2021)