

СПОСОБ УСТРАНЕНИЯ ПОТЕРЬ ЛЕГКИХ ФРАКЦИЙ УГЛЕВОДОРОДОВ ИЗ РЕЗЕРВУАРОВ НЕФТЕПРОДУКТОВ

Сеитов Ильяс Жанатович

магистрант, Торайгыров университет, Республика Казахстан, г. Павлодар

Елубай Мадениет Азаматович

научный руководитель,

Одним из основных средств улучшения экономических показателей производства является максимальное использование имеющихся резервов: сокращение потерь нефти и нефтепродуктов на промыслах, на нефтеперерабатывающих заводах, при транспортировке, на нефтебазах и в процессе потребления [1].

Потери легких фракций бензина приводят к ухудшению товарных качеств, понижению октанового числа, повышению температуры кипения, а иногда и к переводу нефтепродукта в более низкие сорта. Основным видом потерь нефти являются испарения нефтепродуктов в атмосферу в процессе слива/налива продуктов в резервуары, а также в процессе их хранения [2].

Потери лёгких фракций приводят к ухудшению товарных качеств. Основные источники потерь - испарения в резервуарах при хранении [3].

В связи с тем, что большинство потерь нефтепродуктов происходит при их хранении, нами была предложена идея доработки системы БК УЛ Φ , исключающая потери и его фракции в резервуарах.

Одним из наиболее приемлемых решений, обеспечивающих защиту воздушного бассейна от выбросов паров нефтепродуктов и сокращение их потерь, может быть газоуравнительная система, которая отвечает требованиям природоохранных органов.

Установка улавливания легких фракций углеводородов (УУЛФ) предназначена для отбора, компримирования паров легких фракций углеводородов, выделившихся в газовое пространство резервуаров при производстве технологических операций, связанных с подготовкой, переработкой, хранением и перекачкой нефти и нефтепродуктов.

Преимущества использования систем УЛФ:

- практически полностью устранить потери легких фракций углеводородов из резервуаров;
- значительно уменьшить взрывопожароопасность объектов;
- улучшить состояние воздушного бассейна в районе резервуарного парка и систем налива нефтепродуктов (бензин, топливо);
- снизить вредные выбросы в атмосферу и улучшить экологическую обстановку;
- сохранить свойства нефтепродуктов (бензин, топливо);
- получить дополнительную прибыль [4].

Идея доработки системы БК УЛ Φ заключается в осуществлении обогрева днища резервуара в холодное время года, путем размещения на днище резервуара трубных змеевиков, по которым будет циркулировать дизельное топливо, подогретое в блоке из 3-х теплообменных аппаратов. Циркуляцию дизельного топлива по трубному змеевику будут осуществлять два насоса, по квартально.

Принцип работы данной схемы отражен на рисунке 1.

Насосы (H1, H2) с емкости (E) берет на прием дизельное топливо , и с набранным давлением в 3.5 кгс/м² прокачивает его через блок теплообменников (T1,T2,T3). Проходя через межтрубное пространство теплообменника, дизельное топливо вступает в теплообменный процесс с паром, который подается в трубное пространство. Нагревшись до отметки в 67-87° С дизельное топливо подается в систему змеевиков расположенных на дне резервуара. Система змеевиков выполняя функцию калорифера отдает тепло продукту хранения.

Пройдя весь круг системы змеевиков, дизельное топливо по трубопроводу возвращается в емкость Е, после чего. вновь подается на прием насоса Н.

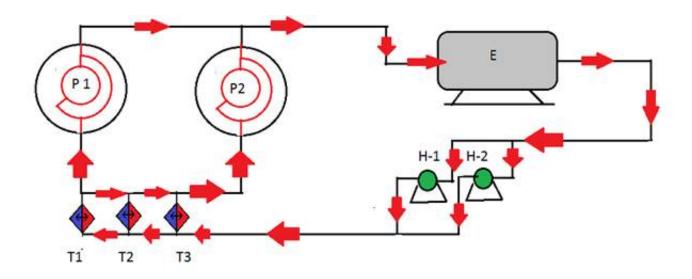


Рисунок 1. Схема обогрева днища резервуаров

В холодное время года процесс испарения нефти (или вакуумного газойля) не так велик за счет не высокой, а порой и отрицательной температуры окружающей среды.

Но актуальность идеи обогрева днища резервуара в холодное время года обусловлена по причине содержания в нефти подтоварной воды. В следствии низкой температуры окружающей среды, а в следствии и низкой температуры сырья, процесс осаждения и отделения воды протекает медленнее. Учитывая климатические условия нашего региона и факт того, что температура в зимнее время года может опускаться до отметки в -45-50°С, нередки случаи замерзания подтоварной воды в резервуаре. Что в свою очередь может стать причиной замерзания задвижек сифонов, застыванию водо-сырьевой смеси в запорной арматуре, что приведет к немедленной разгерметизации запорной арматуры, что приведет к ЧС, не говоря о вышесказанном плохом, а порою невозможном разделении подтоварной воды от сырья.

Борьба с потерями нефти – один из важных путей экономии топливно-энергетических ресурсов, играющих ведущую роль в развитии экономики и интенсификации общественного производства [2]. За последнее время на нефтетранспортных и перерабатывающих предприятиях, а также объектах системы нефтеобеспечения успешно осуществляются различные мероприятия технического и организационного характера, в результате которых

потери нефтепродуктов значительно снижены. Однако, несмотря на принимаемые меры, при транспортировании, хранении и сливно – наливных операциях теряется еще большое количество нефтепродуктов – около 2 % объема всей добываемой в стране нефти. Ущерб, наносимый этими потерями народному хозяйству, состоит не только в уменьшении топливных ресурсов и в стоимости теряемых продуктов, но и в отрицательных экологических последствиях, которые являются результатом загрязнения окружающей среды нефтепродуктами. Поэтому борьба с потерями нефтепродуктов дает не только экономический эффект, но и жизненно важна для обеспечения охраны природы.

Список литературы:

- 1. [Электронный ресурс] Режим доступа: (https://studbooks.net/1715252/tovarovedenie/traditsio nnye_sredstva_sokrascheniya_poter_nefti_nefteproduktov_ispareniya) свободный. Дата обращения 04.06.2021.
- 2. Вагнер И. И., Нургалиева Д. Д. Потери легких фракции нефти в резервуарах // Международный школьный научный вестник. 2019. № 2-1. С. 135-140.
- 3. Международный школьный научный вестник. Научный журнал для старшеклассников и учителей ISSN 2542-0372. [Электронный ресурс] Режим доступа: (https://schoolherald.ru/ru/article/view?id=942) свободный. Дата обращения 04.06.2021.
- 4. [Электронный ресурс] Режим доступа: (https://intech-gmbh.ru/light_fraction_recovery/) свободный. Дата обращения 04.06.2021.