

ПРОИЗВОДСТВО ФИЛАМЕНТА В ДОМАШНИХ УСЛОВИЯХ

Турищев Дмитрий Викторович

магистрант, Воронежский государственный аграрный университет имени императора Петра 1, РФ, г. Воронеж

Скрипников Роман Петрович

магистрант, Воронежский государственный аграрный университет имени императора Петра 1, $P\Phi$, Γ . Воронеж

Пугачев Максим Владимирович

магистрант, Воронежский государственный аграрный университет имени императора Петра 1, РФ, г. Воронеж

Григорьев Евгений Александрович

магистрант, Воронежский государственный аграрный университет имени императора Петра 1, РФ, г. Воронеж

Титова Ирина Вячеславовна

научный руководитель, д-р техн. наук, доцент, Воронежский государственный аграрный университет имени императора Петра 1, $P\Phi$, г. Воронеж

На сегодняшний день производство пластика активно ведет свою деятельность в России и играют немалую роль. На протяжении последнего столетия можно наблюдать график развития данной отрасли.

Пластик — это материал, состоящий из синтетических или полусинтетических полимеров. Полимеры — это огромные молекулы, которые состоят из повторяющихся звеньев — мономеров [1].

Наравне с производством пластика растет и его применение в разных областях: в машиностроении, в железнодорожной сфере, в электрике и радиотехнике, в быту и тд.

Одним из областей быстро развивающихся является производство филамента.

Филамент - это нить для 3D печати. В свою очередь сама нить является термопластовым сырьем для моделирования путем наплавления 3D- принтеров.

3D-печатная нить создается с использованием процесса нагревания, экструзии и охлаждения пластика для преобразования гранул в готовый продукт. Весь этот процесс идет в специальном устройстве под названием «Экструдер». Данное устройство является далеко не дешевым изобретением. Но «домашние умельцы» смогли сделать данный аппарат в домашних условиях [3]. На рис. 1 изображено устройство экструдера.

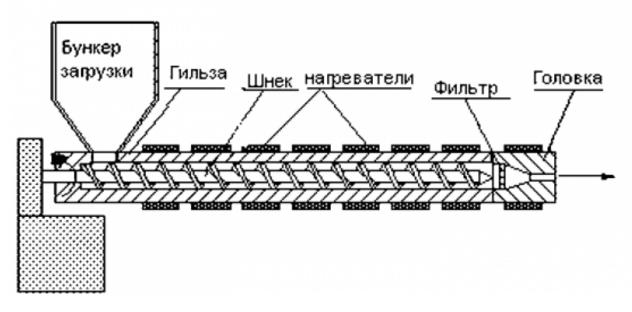


Рисунок 1. Устройство экструдера

Сам процесс изготовления филамента производится в следующим порядке: в бункер загрузки засыпаются высушенные гранулы пластика, через шнек гранулы продвигаются к самой головке (сопло), в процессе чего они нагреваются до определённой температуры (для каждого вида пластика, соответствует своя температура экструдера) за счет нагревателей. Благодаря форме шнека ближе к головке создается давление, за счет чего расплавленный пластик «спекается» и выходит через сопло в виде готового филамента.

Но на выходе мы получаем горячий филамент, который не является пригодным для работы, так как его диаметр не является подходящим, поэтому в производственной линии после экструдера идет охлаждение.

Охлаждение бывает либо воздушное, либо водное, в зависимости от масштаба производства.

После охлаждения идет использование протяжного устройства. Данное устройство является одним из главных в данной цепи. Оно предназначено для регулирования и контроля диаметра филамента за счет скорости протяжки. Если диаметр филамента больше, чем нужно, то скорость протяжки должна увеличиться, если меньше, то уменьшиться (рис. 2) [1].

Рисунок 2. Устройство протяжки

Данное устройство состоит из нескольких прокатывающих роликов и мотора, который приводит в движение привод вращения ролика, считывающего устройства для контроля диаметра и автоматики (модернизация данного устройства возможна) [2].

После протяжного устройства готовый филамент наматывается на намотчик. Данное устройство наматывает падающий на него с протяжки филамент с определённой скоростью, виток к витку. Оно состоит из катушки, пары ведущих шестерней, концовиков и железных валов, а также шаговой с винтовой резьбой (рис. 3).

Рисунок 3. Устройство намотки

Список литературы:

- 1. Демин, Е. Н. Механизация и автоматизация прессования изделий из пластмасс / Е.Н. Демин. М.: Лениздат, 2006. 196 с.
- 2. Завгородний, В. К. Модернизация оборудования для изготовления изделий из пластмасс / В.К. Завгородний. М.: Государственное научно-техническое издательство машиностроительной и судостроительной литературы, 1999. 204 с.
- 3. Калинчев, Э. Л. Выбор пластмасс для изготовления и эксплуатации изделий. Справочник / Э.Л. Калинчев, М.Б. Саковцева. М.: Химия, 1987. 416 с.
- 4. Калинчев, Э.Л. Выбор пластмасс для изготовления и эксплуатации изделий / Э.Л. Калинчев, М.Б Саковцева. М.: Химия, 1987. 416 с