НАХОЖДЕНИЕ ИЗМЕНЕНИЯ ИЗЛИШКА ПОТРЕБИТЕЛЯ В РЕЗУЛЬТАТЕ ПРОВЕДЕНИЯ ГОСУДАРСТВЕННОЙ ПОЛИТИКИ С ПОМОЩЬЮ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ
Секция: 11. Экономика
XIX Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: общественные и экономические науки»
НАХОЖДЕНИЕ ИЗМЕНЕНИЯ ИЗЛИШКА ПОТРЕБИТЕЛЯ В РЕЗУЛЬТАТЕ ПРОВЕДЕНИЯ ГОСУДАРСТВЕННОЙ ПОЛИТИКИ С ПОМОЩЬЮ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ
Математика и Экономика, на первый взгляд, абсолютно не совместимые науки, предметом изучение одной, из которых являются числа и связанные с ними измерения и подсчёты, а другой — производственные и хозяйственные отношения. То есть, по сути, абсолютно никак не соизмеримые и несвязанные вещи. Но на самом деле, на практике, эти две величайшие науки находятся в прочной взаимосвязи.
Начиная с 1738 года, после публикации Франсуаном Кенэ первых экономических таблиц, ученые пришли к выводу о том, что эти две науки, находясь во взаимодействии, способны с легкостью решать задачи, стоящие перед человеком.
Даже такой великий экономист, как Карл Маркс, при построении моделей простого и расширенного воспроизводства и денежного обращения использовал математический аппарат. А такие известные экономисты, как Вильфредо Парето, Леон Вальрас и Альфред Маршалл применяли математические методы в исследовании механизма функционирования рынка. И на сегодняшний день взаимодействие математики и экономики — абсолютно обычное явление.
В своей научной работе я бы хотела продемонстрировать, как с помощью такого математического метода, как интегральное исчисление, возможно исследовать процессы, происходящие в экономике.
Интегральное исчисление — огромнейший раздел математики, изучающий свойства и способы вычисления интегралов. Центральными понятиями интегрального исчисления являются понятия определённого и неопределенного интеграла.
При последующем рассмотрении экономический задач мною будет использоваться понятие определенного интеграла. Обозначают его так:
где:
∫ — знак интеграла;
a и b — соответственно нижний и верхний пределы интегрирования;
x — переменная интегрирования;
f(x)dx — подынтегральное выражение;
f(x) — подынтегральная функция.
Стоит вспомнить, что геометрический смысл определенного интеграла состоит в том, что определенный интеграл численно равен площади криволинейной трапеции.
Теперь мы можем приступить к практическим примерам использования интегрального исчисления в экономике. Начнем с такого понятия как потребительский излишек. Но прежде стоит ознакомиться с несколькими экономическими понятиями и обозначениями:
Спрос (D) — это обратная зависимость, устанавливаемая между ценой товара и объемом его покупки, сложившаяся на определенный момент времени. Графически спрос на товар изображают в виде кривой с отрицательным наклоном (Рис. 1), которая отражает взаимосвязь между ценой единицы товара — Р и количеством товара — Q, которое потребители готовы приобрести при заданной цене:
Рисунок 1. Кривая спроса
Противоположностью спроса на товар является предложение (S) — прямая зависимость между ценой товара и его количеством, предлагаемым к продаже. Предложение товара изображают графически в виде кривой с положительным наклоном (рис. 2):
Рисунок 2. Кривая предложения
Также мы введем ещё одно понятие важное при моделировании экономических процессов, такое как рыночное равновесие (E). Это состояние возникает при такой цене и количестве товара, при которых объем спроса равен величине предложения. Графически рыночное равновесие изображают точкой пересечения кривой спроса и кривой предложения (рис. 3):
Рисунок 3. Рыночное равновесие
Теперь мы можем перейти к рассмотрению способа применения интегрального исчисления для определения потребительского излишка(CS) — разницы между ценой, которую потребитель готов заплатить за данный товар, и той, которую он реально платит. Для этого изобразим на графике обратную функцию спроса P = f(Q), в таком случае графически аргумент и значение функции будут изображаться более понятным для нас образом.
Допустим, покупатель приобретает товар в количестве Q* по равновесной цене P*. Общие расходы на его покупку составят P*Q*, а это равно площади фигуры A (рис.4):
Рисунок 4. Расходы покупателя
Но предположим, что товар в количестве Q* реализуется продавцом не сразу, а поставляется на рынок постепенно, партиями — такое допущение является ключевым при вычислении потребительского излишка.
Площадь криволинейной трапеции B (рис. 5) равна сумме, которую потребитель готов отдать при покупке Q* единиц данного товара:
Рисунок 5. Сумма, которую потребитель готов отдать при покупке
Площадь фигуры В по данным рисунка 5 равна:
А разность между и и есть потребительский излишек (CS)(Рис. 6):
Рисунок 6. Потребительский излишек
Из этого следует, что его можно посчитать так:
CS = (1)
Теперь рассмотрим применение формулы на конкретном примере:
Задача 1. Спрос на некоторый товар задается функцией, где за q принимается количество товара (в шт.), а за p — цена единицы товара (в руб.). Равновесие на рынке этого товара достигается при p* = q* = 2. Чему будет равна величина потребительского излишка?
Решение.
Ответ. Величина потребительского излишка рублей.
Теперь перейдем к рассмотрению приложений интегрального анализа для определения излишка производителя (PS). Излишек производителя — разница между денежной суммой, за которую он был бы готов продать определенное количество товара, и той суммой, которую он действительно получит при его продаже. Графически он представляется площадью фигуры, ограниченной осью цен, прямой, параллельной оси абсцисс, проходящей через точку рыночного равновесия, и кривой предложения (рис. 7):
Рисунок 7. Излишек производителя
Очевидно, что:
PS = — (2)
Рассмотрим, как полученная формула применяется при решении экономических задач:
Задача 2. Дана кривая предложения . Равновесие на рынке данного товара достигается при объеме продаж . Необходимо определить добавочную выгоду производителя при продаже такого количества продукции.
Решение. Для начала из функции предложения определим равновесное значение цены
Теперь подставим полученное значение в формулу (2):
Ответ. Выгода производителя в данном случае 960 рублей.
Однако, в реальной жизни значения излишка потребителя и производителя представляют небольшой интерес для экономических деятелей. Для них более важно насколько изменится излишек потребителя в результате проведения государственной политики: при установлении налогов, введении субсидий и других меры, оказывающих влияние на равновесие на рынке.
Предположим, что единица товара облагается налогом в размере t (такой налог в среде экономистов называют «потоварным» налогом), тогда его цена увеличится с P1 до P2, где P2 = P1 + t (Рис. 8):
Рисунок 8. Изменение излишка потребителя
Итак, мы получаем, что (уменьшение благосостояния потребителя) — есть разница площадей двух фигур и по форме напоминает криволинейную трапецию, площадь которой равна сумме площадей фигур и, то есть , где (потери благосостояния потребителя, вследствие увеличения цены товара), а (потери излишка потребителя, в связи с уменьшением количества потребляемого товара) равна:
—
Таким образом, изменение излишка потребителя в случае введения «потоварного» налога в размере t равно:
= t + -
Так же результат в общем виде может быть найден так:
= + (3)
Теперь, воспользовавшись полученными формулами, мы можем оценить последствия введения «потоварного» налога на предложенном примере:
Задача 3. Известно, что спрос на некоторый товар имеет вид . Каков проигрыш потребителя при введении на некоторый товар налога с единицы продаж в размере 2 рублей, если известно, что изначально рыночное равновесие на данном рынке наблюдалось при цене рубля?
Решение. Чтобы определить потребительские потери при увеличении равновесной цены с 3 рублей до 5 рублей, понаблюдаем, как при этом изменяется объем продаж. Если , то , при , то . Теперь, используя формулу (3), вычислим :
Ответ. Если «потоварный» налог будет введен, потребитель переплатит, приобретая данный товар, 11 рублей.
Список литературы:
- Вечканова Г.Р., Вечканов Г.С. Микроэкономика, 8-е издание. Учеб. пособие. Изд.: «Питер», 2010. — 208 с.
- Горбунова Р.И., Курганова М.В., Макаров С.И., Мищенко М.В., Нуйкина Е.Ю., Севастьянова С.А., Семенова М.М., Сергеева Л.В., Уфимцева Л.И., Фомин В.И., Черкасова Т.Н., Чупрынов Б.П. Математика для экономистов Задачник. Учеб.-практ. пособие / Под ред. Макарова С.И., Мищенко М.В. М.: КНОРУС, 2008. — 360 с.
- Макаров С.И. Математика для экономистов. Учеб. пособие / Под ред. С.И. Макарова. М.: КНОРУС, 2008. — 264 с.
- Паничева Л.В. Определенный интеграл при расчете экономической прибыли. / Современные наукоемкие технологии № 7, 2014.
- Потоварный налог — [Электронный ресурс] — Режим доступа. — URL: http://www.ngpedia.ru/id174431p2.html (дата обращения 10.11.2014).