Статья:

Поверхностная лазерная закалка сканирующим излучением

Конференция: XXVII Международная научно-практическая конференция «Научный форум: технические и физико-математические науки»

Секция: Машиностроение и машиноведение

Выходные данные
Шиянок В.В., Точилкина Н.А. Поверхностная лазерная закалка сканирующим излучением // Научный форум: Технические и физико-математические науки: сб. ст. по материалам XXVII междунар. науч.-практ. конф. — № 8(27). — М., Изд. «МЦНО», 2019. — С. 28-32.
Конференция завершена
Мне нравится
на печатьскачать .pdfподелиться

Поверхностная лазерная закалка сканирующим излучением

Шиянок Владислав Васильевич
магистрант, Белорусский национальный технический университет, РБ, г. Минск
Точилкина Надежда Анатольевна
магистрант, Московский государственный технологический университет «СТАНКИН», РФ, г. Москва

 

Современное производство, в частности машиностроение, нуждается в деталях и изделиях с повышенными эксплуатационными характеристиками. Изготовление таких изделий традиционными методами зачастую вызывает значительные трудности из-за высокой стоимости процесса обработки. Решение этой проблемы может быть найдено путём разработки принципиально новых технологических процессов упрочняющей обработки материалов, основанных на использовании последних достижений науки и техники. К таким процессам относится лазерная поверхностная закалка, позволяющая существенно поднять ресурс службы инструментов и деталей, изготовленных из различных сталей. Скоростной локальный нагрев и быстрое охлаждение обрабатываемого материала за счет теплоотвода в массив изделия, обеспечиваемые лазерным излучением, способствуют формированию поверхностных слоев толщиной до 2 мм(рис.1).

 

Рисунок 1. Схема геометрических размеров закаленной зоны (ширина, глубина) [2].

 

Чаще всего распределение плотности мощности Е(r) в сечении сфокусированного лазерного излучения происходит по нормальному (гауссовому) распределению. При действии такого излучения на поверхности тела возникает тепловой источник нагрева также с нормальным распределением плотности мощности в пятне лазерного излучения (рис. 2):

                                                                                                            (1)

где qmax – максимальная плотность мощности в центе пятна нагрева;  Аэф - эффективный коэффициент поверхностного лазерного излучения; Еmax – максимальная плотность мощности лазерного излучения по оси; k – коэффициент сосредоточенности, характеризующий форму кривой нормального распределения; r –радиус данной точки.

 

Рисунок. 2. Нормальное распределение плотности мощности в пятне лазерного излучения: 1 ‒ лазерное излучение; 2 – обрабатываемая деталь.

 

Однако, повышая концентрацию лазерного излучения, мы значительно увеличиваем скорость нагрева. При таком лазерном излучении она может составлять до 1000000 °С/сек, что в свою очередь способствует формированию поверхностных слоев толщиной в несколько микрон. Такие слои слабо изучены, но в перспективе могут обладать уникальными характеристиками и свойствами. Такой процесс еще называют лазерной аморфизацией поверхностей. Наибольший эффект можно достичь, используя аморфизацию для промышленных сталей и чугунов с одновременным легированием поверхности. Промышленное использование процесса лазерной аморфизации деталей и узлов машин из конструкционных материалов позволит существенным образом повысить такие эксплуатационные свойства как коррозионная стойкость, износостойкость и др.

Таким образом, целью данной работы является исследование физико-механических и трибологических свойств покрытий, сформированных методом сканирующего лазерного излучения.

Трибологические испытания проводились для 4 видов образцов: борированные с лазерной закалкой, объемно-закаленные с лазерной закалкой, борированные, объемно-закаленные. Образцы были изготовлены из стали 45. Электронно-микроскопическое исследование изношенных поверхностей выполнялись с помощью сканирующего электронного микроскопа “JEOL JSM-5600LV”. Планирование эксперимента проводилось по модели полного факторного эксперимента. Изменяемыми факторами для сканирующей лазерной закалки будут 3 показателя: P, Вт – мощность лазерного излучения, V, мм/с – скорость передвижения лазерного луча, DF, мм – фокусное расстояние лазерного луча.

Установлено, что борированная поверхность после дополнительной лазерной закалки при P = 8 Вт, V = 100 мм/с, DF = 148 мм характеризуется наименьшим коэффициентом трения. Наибольшим коэффициентом трения обладает объемно-закаленная поверхность после дополнительной лазерной закалки при P = 8 Вт, V = 100 мм/с, DF = 148 мм. Максимальный коэффициент трения превышает минимальный в 2.5 раза. Выявлено, что объемно-закаленная поверхность после дополнительной лазерной закалкой при P = 8 Вт,V = 100 мм/с, DF = 148 мм обладает наименьшей интенсивностью изнашивания. Наибольшей интенсивностью изнашивания обладает объемно-закалённая поверхность с дополнительной лазерной закалкой при P = 20 Вт, V = 100мм/с, DF = 150 мм. Максимальная интенсивность изнашивания превышает минимальную в 12,5 раз.

Изображения изношенных поверхностей представлены в таблице 1.

Таблица 1.

Электронно-микроскопическое исследование

а) - Изображение изношенной поверхности борированного образца с лазерной закалкой при P = 8 Вт, V = 100мм/с, DF = 150 мм.

б) - Изображение изношенной поверхности борированного образца с лазерной закаклкой при P = 8 Вт, V = 100мм/с, DF = 148 мм.

в) - Изображение изношенной поверхности борированного образца без лазерной обработки.

г) - Изображение изношенной поверхности объемно-закаленного образца с лазерной закалкой при P = 20 Вт, V = 1000мм/с, DF = 150 мм.

 

Проведенные исследования показали целесообразность использования технологии упрочнения сканирующим лазерным излучением с целью повышения ресурса службы изделий.

 

Список литературы:
1. Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. Технологические процессы лазерной обработки: Учебное пособие для вузов / Под ред. А.Г. Григорьянца. ‒ М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. ‒ 665 с.
2. Moradi M., Moghadam M.К. High power diode laser surface hardening of AISI 4130; statistical modelling and optimization. Optics & Laser Technology. 2019. Vol. 111. Р. 554-570.
3. Moradi M., Moghadam M.K., Kazazi M. Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating. Optik. 2019. Vol. 178. Р. 614-622.