Основные подходы к организации баз знаний интеллектуальных систем
Конференция: XVIII Студенческая международная научно-практическая конференция «Молодежный научный форум»
Секция: Технические науки
XVIII Студенческая международная научно-практическая конференция «Молодежный научный форум»
Основные подходы к организации баз знаний интеллектуальных систем
База знаний – комплекс программных средств, которые обеспечивают хранение, преобразование, поиск и запись в памяти ЭВМ информационных единиц (знаний), имеющих сложную структуру [1].
База знаний — это своеобразного рода база данных, которая разработана для управления знаниями (метаданными) [3].
Несомненно, одним из первостепенных составляющих любой интеллектуальной системы выступает база знаний. Ее функция состоит не только в реализации функции памяти вышеупомянутой системы, но в осуществлении механизмы взаимодействия между интеллектуальной системой и её знаниями. Формирование универсальной архитектуры базы знаний, которая была бы направлена на различные предметные области, чрезвычайно важно для любой интеллектуальной системы. Такая архитектура позволяет длительное время содержать информацию о различных предметных областях в рамках одной архитектуры интеллектуальной системы.
Пожалуй, наиболее значительный параметр баз знаний — качество содержащихся знаний. Наилучшие базы знаний содержат, самую свежую, достоверную и релевантную информацию, обладают совершенными системами поиска информации, имеют формат знаний и тщательно продуманную структуру.
Простые базы знаний наиболее часто используются при формировании экспертных систем, а также для того, чтобы данные об определённой организации хранились в одном месте: документация, руководства, статьи технического обеспечения. Одна из главных целей создания таких баз — прийти на помощь менее опытным людям найти самые существенные описания способа решения какой-либо проблемы предметной области. Обширная область интуитивных знаний специалистов, необходимые для успешной работы интеллектуальных систем, остаётся недоступной из-за отсутствия средств их извлечения и представления [4].
В последнее время термин «знание» стал часто находить применение в сфере информатики. Эксперты отмечают, что для модернизации интеллектуальных систем (информационно-поисковых систем высокого уровня, диалоговых систем, которые базируются на естественных языках, интерактивных человеко-машинных систем, используемых в управлении, проектировании, научных исследованиях) нужно знать, как именно успешно будут решаться задачи (проблемы) представления знаний.
На рисунке 1 изображена архитектура интеллектуальной системы.
Рисунок 1.Архитектура информационной системы, как интерфейс взаимодействия пользователя с базой знаний
В данной модели база знаний решает следующие задачи:
Поиск информации, необходимой пользователю (заложенной в базе знаний, так и косвенной информации, выведенной на основе существующей); трансформирование полученной информации в модель знаний, применяемая внутри интеллектуальной системы, которая взаимодействует с базой знаний; своевременное обновление знаний внутри себя; поддержание адекватности и целостности информации.
На рисунке 2 представлена общая архитектурная модель базы знаний интеллектуальной системы.
Рисунок 2. Архитектурная модель базы знаний информационной системы
Согласно [2] существует три основных типа моделей представления знаний в ИС: формальные; неформальные; интегрированные, или смешанные. Формальные модели состоят из множества сущностей (алфавит, аксиомы, правила вывода, синтаксические правила и др.). У этих моделей хорошо разработаны методы логического вывода, зато отсутствует гибкость модели. Для того чтобы хранить, обновлять и использовать знания применяют основные подходы к организации баз знаний интеллектуальных систем (рисунок 3).
Рисунок 3. Организация баз знаний интеллектуальных систем
Представление знаний. Знания, хранящиеся в ИИС, после объединения знаний интегрируются, которые поступили от многих индивидуальных экспертов, и могут осуществлять формы правила вывода и баз данных. Довольно часто элементы знаний проявляются на одном из этих языков. Они агрегированы в гибридное представление знаний под видом одного источника знаний, который далее уже может быть агрегирован в глобально совместную базу знаний.
Организация знаний. Для организации баз знаний используются фундаментальные знания, проблемно-ориентированные знания, знания для поддержания диалога. Специфичные для диалога знания, обладают стандартизированной процедурой диалога, которая состоит из анализа пользовательских запросов и требований, интерпретации этих запросов по отношению к прикладной системе, она основана на знаниях и генерации ответа на основе кооперативного диалога.
Если база фактов стала большой или необходим доступ к внешним базам фактов, то нужно воспользоваться механизмами систем управления баз данных и экспертных систем.
Окружение. Доступ к базе данных будет скрыт от пользователя в методологии (тесное связывание). Перед началом запуска диалога консультаций, в методологии (слабое связывание), пользователю понадобиться загрузить внешние данные эксплицитно. Необходимость в окружении очень важна, так как через него самые различные базы знаний должны быть заполнены.
Связывание. Помимо обеспечения доступа к внешним базам данных, таким как численные вычисления или графика, экспертным системам очень часто нужно установить связь с другими средствами информационных систем.