Обобщение классов Поста на случай трехзначной логики
Секция: Физико-математические науки
XVII Студенческая международная научно-практическая конференция «Технические и математические науки. Студенческий научный форум»
Обобщение классов Поста на случай трехзначной логики
Задачи
Обобщить классы Поста на случай трехзначной логики;
Доказать их замкнутость.
Функции двузначной и трехзначной логики
В курсе дискретной математики рассматриваются булевы функции, то есть функции многих переменных, каждый аргумент которых и сами функции могут принимать лишь два значения: 0 и 1. Множество булевых функции обозначается .
Функции двузначной логики – это отображения вида
Функции многих переменных, каждый аргумент которых и сами функции могут принимать три значения: 0, 1 и 2. Полученные функции обозначаются .
Получилось, что функции трехзначной логики – это отображения вида
Предполные классы
Замыканием множества булевых функций u называется множество всех суперпозиций функций класса , которое обозначается . Класс называется функционально полным, если .
Предполный класс в теории булевых функций – это замкнутый класс булевых функций, обладающий следующим свойством: замыкание объединения этого класса с любой булевой функцией, не принадлежащей ему, порождает весь класс .
В классе есть 5 предполных класса, называемых классами Поста:
1. Класс функций, сохраняющий константу 0:
2. Класс функций, сохраняющий константу 1:
3. Класс линейных функций:
4. Класс самодвойственных функций:
Говорят, что набор предшествует набору и пишут , если где
5. Класс монотонных функций:
При переходе от двузначного случая к трехзначному наблюдается увеличение количества предполных классов. Таким образом, в есть 18 предполных классов:
1. Класс функций, сохраняющий константу 0:
2. Класс функций, сохраняющий константу 1:
3. Класс функций, сохраняющий константу 2:
Для следующих трех классов, сохраняющих множество, доказано, что каждый из них является позитивным замыканием множества всех своих одноместных функций:
4. Класс функций, сохраняющий множество {0,1}:
5. Класс функций, сохраняющий множество {0,2}:
6. Класс функций, сохраняющий множество {1,2}:
7. Класс самодвойственных функций S:
Отрицание введено как отрицание Поста: То есть этот класс является классом, сохраняющим отношение
8. Класс линейных функций:
9. Класс монотонных функций M_0 относительно порядка :
10. Класс монотонных функций M_1 относительно порядка :
11. Класс монотонных функций M_2 относительно порядка
12. Класс сохранения разбиения
13. Класс сохранения разбиения
14. Класс сохранения разбиения
15. Центральный предполный класс , сохраняющий отношение
16. Центральный предполный класс , сохраняющий отношение
17. Центральный предполный класс , сохраняющий отношение
18. Предполный класс Слупецкого такой, что все трехзначные функции имеют либо не более одной существенной переменной, либо принимают не более двух значений.
В таблице 1 указаны строки принадлежности всех трехзначных функций, имеющих не более одной существенной переменной. Каждой функции поставим в соответствие строку принадлежности: «+», если принадлежит соответствующему предполному классу, и «-», если не принадлежит соответствующему предполному классу.
Таблица 1
a |
b |
c |
T0 |
T1 |
T2 |
T0,1 |
T0,2 |
T1,2 |
S |
L |
M0 |
M1 |
M2 |
U0 |
U1 |
U2 |
C0 |
C1 |
C2 |
B |
0 |
0 |
0 |
+ |
- |
- |
+ |
+ |
- |
- |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
0 |
0 |
1 |
+ |
- |
- |
+ |
- |
- |
- |
- |
- |
+ |
- |
- |
- |
+ |
+ |
+ |
- |
+ |
0 |
0 |
2 |
+ |
- |
+ |
+ |
+ |
- |
- |
- |
+ |
+ |
- |
- |
+ |
+ |
+ |
- |
+ |
+ |
0 |
1 |
0 |
+ |
+ |
- |
+ |
+ |
+ |
- |
- |
+ |
- |
+ |
- |
+ |
+ |
+ |
+ |
- |
+ |
0 |
1 |
1 |
+ |
+ |
- |
+ |
- |
+ |
- |
- |
- |
+ |
+ |
+ |
- |
+ |
+ |
+ |
- |
+ |
0 |
1 |
2 |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
0 |
2 |
0 |
+ |
- |
- |
- |
+ |
+ |
- |
- |
- |
- |
+ |
- |
+ |
- |
+ |
- |
+ |
+ |
0 |
2 |
1 |
+ |
- |
- |
- |
- |
+ |
- |
+ |
- |
- |
- |
+ |
- |
- |
+ |
- |
- |
+ |
0 |
2 |
2 |
+ |
- |
+ |
- |
+ |
+ |
- |
- |
- |
+ |
+ |
+ |
+ |
- |
+ |
- |
+ |
+ |
1 |
0 |
0 |
- |
- |
- |
+ |
- |
- |
- |
- |
- |
- |
- |
+ |
- |
+ |
+ |
+ |
- |
+ |
1 |
0 |
1 |
- |
- |
- |
+ |
- |
- |
- |
- |
- |
- |
- |
- |
+ |
+ |
+ |
+ |
- |
+ |
1 |
0 |
2 |
- |
- |
+ |
+ |
- |
- |
- |
+ |
- |
- |
- |
- |
- |
+ |
- |
- |
+ |
+ |
1 |
1 |
0 |
- |
+ |
- |
+ |
- |
- |
- |
- |
+ |
- |
- |
- |
- |
+ |
+ |
+ |
- |
+ |
1 |
1 |
1 |
- |
+ |
- |
+ |
- |
- |
- |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
1 |
1 |
2 |
- |
+ |
+ |
+ |
- |
- |
- |
- |
+ |
+ |
- |
+ |
- |
+ |
- |
+ |
+ |
+ |
1 |
2 |
0 |
- |
- |
- |
- |
- |
- |
+ |
+ |
- |
- |
- |
- |
- |
- |
- |
- |
- |
+ |
1 |
2 |
1 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
+ |
+ |
- |
- |
+ |
+ |
+ |
1 |
2 |
2 |
- |
- |
+ |
- |
- |
- |
- |
- |
- |
+ |
- |
+ |
- |
- |
- |
+ |
+ |
+ |
2 |
0 |
0 |
- |
- |
- |
- |
+ |
- |
- |
- |
- |
- |
- |
+ |
+ |
- |
+ |
- |
+ |
+ |
2 |
0 |
1 |
- |
- |
- |
- |
- |
- |
+ |
+ |
- |
- |
- |
- |
- |
- |
- |
- |
- |
+ |
2 |
0 |
2 |
- |
- |
+ |
- |
+ |
- |
- |
- |
+ |
- |
- |
- |
+ |
- |
+ |
- |
+ |
+ |
2 |
1 |
0 |
- |
+ |
- |
- |
+ |
- |
- |
+ |
- |
- |
- |
- |
+ |
- |
- |
+ |
- |
+ |
2 |
1 |
1 |
- |
+ |
- |
- |
- |
- |
- |
- |
- |
- |
+ |
+ |
- |
- |
- |
+ |
+ |
+ |
2 |
1 |
2 |
- |
+ |
+ |
- |
+ |
- |
- |
- |
+ |
- |
+ |
+ |
+ |
- |
- |
+ |
+ |
+ |
2 |
2 |
0 |
- |
- |
- |
- |
+ |
- |
- |
- |
- |
- |
- |
- |
+ |
+ |
+ |
- |
+ |
+ |
2 |
2 |
1 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
+ |
- |
+ |
- |
+ |
+ |
+ |
2 |
2 |
2 |
- |
- |
+ |
- |
+ |
- |
- |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
+ |
Доказательство замкнутости некоторых предполных классов.
- замкнутый класс.
Доказательство. Пусть дана произвольная систему функций из и функция . Среди переменных функций могут встречаться и одинаковые, поэтому в качестве переменных функции берутся все различные из них. Тогда Следовательно, функция также сохраняет ноль. Рассмотрен только частный случай (без переменных в качестве аргументов). Однако, поскольку тождественная функция сохраняет ноль, подстановка простых переменных эквивалентна подстановке тождественной функции, что и требовалось доказать.
Аналогично доказывается замкнутость классов
S - замкнутый класс.
Доказательство. Пусть и .
Тогда из принципа двойственности следует, что
.
Получается, что и , что и требовалось доказать.
L - замкнутый класс.
Доказательство. Поскольку тождественная функция – линейная, достаточно рассмотреть только случай подстановки в формулы функций: пусть и Достаточно доказать, что . Действительно, если не учитывать слагаемых с коэффициентами , то всякую линейную функцию можно представить в виде . Если теперь вместо каждого подставить линейное выражение, то получится снова линейное выражение или константа 0, 1 или 2.
- замкнутый класс.
Доказательство. Поскольку тождественная функция монотонна, достаточно проверить лишь случай суперпозиции функций. Пусть и . Пусть даны произвольные наборы такие, что Тогда Следовательно и , то есть . Пусть . Тогда по определению и, в силу монотонности функции имеем Но ,
, откуда , следовательно , что и требовалось доказать.
Аналогично доказывается замкнутость классов и .
Заключение
В ходе выполнения работы были обобщены классы Поста на случай трехзначной логики. Также была доказана замкнутость некоторых из них.