Анализ вентильных преобразователей с характеристиками источников тока
Секция: Технические науки
XXXIX Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: технические и математические науки»
Анализ вентильных преобразователей с характеристиками источников тока
В научной статье дан анализ вентильных преобразователей с характеристиками источников тока. На основе проведённого анализа, для наиболее энергоемких потребителей рекомендован токопараметрический преобразователь, имеющий естественную токовую характеристику.
Ускорение научно-технического прогресса предъявляет все возрастающие требования к источникам и преобразователям электрической энергии по надёжности и экономичности. Производство и распределение электрической энергии в основном осуществляется на переменном токе при частоте 50 Гц. В тоже время более 30% производимой электроэнергии потребляется на постоянном токе. Для преобразования переменного тока в постоянный ток, широко используются полупроводниковые преобразователи[4].
Для целого ряда электротехнологических потребителей постоянного тока (электролиз цветных металлов и химических элементов, гальванопластика, зарядка аккумуляторных батарей, электродуговые печи постоянного тока, электросварка постоянным током, плазматроны) требуется стабилизация и регулирование питающего тока. Эти потребители имеют нелинейную вольтамперную характеристику и малое дифференциальное сопротивление. При исследовании электромагнитных процессов эти потребители могут быть представлены нагрузкой в виде противо-ЭДС.
Качество регулирования мощности, передаваемой от источника к потребителю, зависит от согласования их вольтамперных характеристик. В оптимальном случае источник и потребитель должны иметь “противоположные” характеристики. Следовательно, для питания потребителей с малым дифференциальным сопротивлением необходим источник тока.
В настоящее время известен ряд преобразователей с характеристиками источников тока [3]. Рассмотрим основные их виды.
1) Магнито-тиристорные преобразователи (МТП), использующие в качестве составных элементов дроссели насыщения с разделёнными рабочими обмотками (рисунок 1). Они позволяют осуществить управление режимами работы по силовой цепи. Ток нагрузки определяется только током управления и не зависит при работе на линейном участке от напряжения, частоты сети и сопротивления нагрузки [5].
2) Преобразователи с дозированной передачей энергии из сети в нагрузку, использующие явление перезарядки конденсатора, включённого в диагональ тиристорного моста (рисунок 2). Наилучшим образом такие преобразователи могут использоваться в режиме параметрической стабилизации тока при работе на нагрузку с крутопадающей внешней характеристикой.
3) Асинхронные генераторы (АГ) с конденсаторным возбуждением работающие в режиме источника тока. Ha рисунке 3 приведена схема работы АГ на нагрузку постоянного тока.
4) Вентильно-емкостные преобразователи, представляющие собой диодно-конденсаторные схемы, работающие в режиме близком к кроткому замыканию цепи нагрузки (рисунок 4).
5) Управляемые вентильные преобразователи, в которых характеристики источника тока формируются за счёт отрицательной обратной связи по току. Постоянство тока в этом случае обеспечивается регулированием величины выходного напряжения преобразователя. Структурная схема преобразователя приведена на рисунке 5.
Рисунок 1. Схема магнитно-тиристорного преобразователя
ZH |
Рисунок 2. Схема преобразователя с дозированной передачей. Энергии из сети в нагрузку
Рисунок 3. Схема асинхронного генератора с конденсаторным возбуждением
Рисунок 4. Схема вентильно-емкостного преобразователя
Рисунок 5. Структурная схема управляемого вентильного преобразователя отрицательной обратной связью. ЗТ – задатчик тока; РT – регулятор тока; УВП – управляемый вентильный преобразователь; Н – нагрузка; ДТ – датчик тока
Рисунок 6. Структурная схема токопараметрического преобразователя. ПИТ – параметрический источник тока; ВК – вентильный комплект
Управляемые вентильные преобразователи, построенные на базе замкнутых систем стабилизации тока, до настоящего времени нашли широкое практическое применение (ТВ9, ВАК, ВАКР и др.). Они позволяют регулировать величину тока нагрузки в широких пределах и обеспечивают сравнительно высокую надежность. Однако, наряду с этим, данные преобразователи обладают рядом недостатков: сложность схемных решений; повышенными требованиями к устойчивости; отрицательным влиянием на питающую сеть [2].
Так как рабочее напряжение энергоемких потребителей меняется в широких пределах, коэффициент сдвига преобразовательных агрегатов оказывается ниже номинальной величины. Кроме того, остается несогласованность динамических ВАХ источника и приемника. Это приводит к значительны пульсациям выпрямленного тока, особенно при углах регулирования близких к девяносто градусов.
6) Токопараметрические преобразователи (ТПП), разработанные на базе параметрического исто чника тока (ПИТ) и обладающие естественной токовой характеристикой. Токопараметрические преобразователи обладают рядом существенных достоинств по сравнению с управляемыми вентильными преобразователями с обратной связью по току, основными из которых являются [5]:
· высокий коэффициент мощности во всем диапазоне выходных напряжений;
· устойчивость к частым технологическим коротким замыканиям (режиму характерному для электродуговых процессов);
· возможность параллельной работы группы таких преобразователей на общую нагрузку. Это позволяет создавать источники тока практически любой мощности, с высокой надёжностью;
· уменьшение коэффициента гармоник потребляемого сетевого тока по сравнению с традиционными преобразователями напряжения.
Обладая несколько худшими массогабаритными показателями, по сравнению с агрегатами серии ТВ9, источники питания с ПИТ показали лучшие энергетические характеристики. В зависимости от номинальной мощности источника их КПД составляет 93–96% (у агрегатов серии ТВ9 ответственно 91–93%). В номинальном режиме коэффициент мощности у истопников с ПИТ0,91–0,96% (ёмкостной), у агрегатов ТВ9 он составляет 0,87–0,93 соответственно. В зависимости от глубины регулирования коэффициент мощности последних может снижаться до 0,6. У источников с ПИТ изменяется незначительно и не бывает0,9 [1].
Сравнение проводилось по установленной мощности конденсаторов и реакторов. Расчёт делался в общем виде для широко распространённого на практике управляемого мостового выпрямителя с выходным компенсационным фильтром, работающим в режиме стабилизатора тока на низкоомную активную нагрузку с индуктивным фильтром. При полном диапазоне изменения напряжения на нагрузке коэффициент мощности такого выпрямителя близок к 0,5 (без учета компенсации) и требует значительной мощности фильтрокомпенсирующих устройств.
На основании вышеизложенного считается наиболее целесообразным применение вентильных преобразователей на базе параметрических источников тока для потребителей с нелинейной вольтамперной характеристикой, особенно для энергоёмких потребителей.