Получение медицинского генераторного радиоизотопа стронций-82
Секция: Химия
лауреатов
участников
лауреатов
участников
II Студенческая международная научно-практическая конференция «Естественные и медицинские науки. Студенческий научный форум»
Получение медицинского генераторного радиоизотопа стронций-82
Введение
Последние десятилетия отмечены интенсивным внедрением методов ядерной физики и других наукоемких технологий в области, непосредственно связанной с качеством человеческой жизни и, в частности, с развитием совершенно новых областей медицины. Одним из наиболее перспективных направлений является ядерная медицина. Уникальность методов ядерной медицины состоит в том, что они позволяют диагностировать функциональные отклонения жизнедеятельности органов на самых ранних стадиях болезни, когда человек еще не чувствует симптомы заболевания. Однако для использования подобных методик требуются высокочистые и зачастую дефицитные изотопы. Производство изотопов с позитронной эмиссией, позволяющей использовать их в ПЭТ (позитронно-эмиссионной томографии), очень важно для развития методов диагностики заболеваний. Совмещение экспериментальных методов ядерной физики и сверхчувствительных методик детектирования создают прекрасную перспективу для развития методик диагностики и терапии заболеваний в современной медицине. Для разработки и использования данных методов в Петербургском Институте Ядерной Физики Национального Исследовательского Центра “Курчатовсий Институт” был построен и запущен сильноточный протонный циклотрон Ц-80, а также разработан проект радиоизотопного комплекса РИЦ-80 (Радиоактивные Изотопы на циклотроне Ц-80). Одной из основных задач проекта является разработка и создание трех мишенных станций, а также мишенных устройств для производства медицинских радионуклидов. На РИЦ-80 планируется производить весь спектр наиболее используемых в настоящее время медицинских радионуклидов, включая генераторный ПЭТ радионуклид 82Sr.
Рисунок 1. Циклотрон Ц-80 (ПИЯФ) на первом этаже экспериментального зала синхроциклотрона Ц-1000
Ускоритель размещен на первом этаже экспериментального зала синхроциклотрона ПИЯФ и рассчитан на получение протонных пучков с энергией 40–80 МэВ и током до 200 мкА, предназначенных для получения широкого спектра медицинских радионуклидов и для лечения злокачественных глазных образований.
Получение 82Sr из облученного материала RbCl.
Для получения радионуклида 82Sr, являющегося материнским для 82Rb, в качестве мишенного вещества использовался порошок RbCl. В таблице 1 приведены бета и гамма распадные характеристики стронциево-рубидиевого генератора.
Таблица 1.
Распадные характеристики изотопов 82Sr и 82Rb
Изотоп |
T1/2 |
Тип распада |
Энергия МэВ |
Sr-82 |
25 дней |
ЭЗ |
|
Rb-82 |
1,3 мин |
β + |
0,511γ 0,776γ 3.18β |
Радионуклид 82Sr с периодом полураспада 25 дней является материнским для 82Rb (T1/2= 1,3 минуты), который применяется в ПЭТ для диагностики заболеваний сердечно сосудистой системы и опухолей мозга. Метод позитронно-эмиссионной томографии наиболее эффективен для бесконтактного изучения перфузии миокарда при диагностировании и прогнозировании пациентов с подозрением на заболевание коронарной артерии. Использование рубидия-82 позволяет проводить оценку перфузии миокарда с высокой чувствительностью а также может применяться при изучении функций головного мозга, желудочно-кишечного тракта, печени и почек. Для выделения из мишенного вещества целевого изотопа стронция был использован новый высокотемпературный метод, так называемый метод «сухого» выделения. Мишенное вещество, металлический рубидий, или соль хлористого рубидия облучали на пучке протонов 1 ГэВ синхроциклотрона ПИЯФ. Стронций-82 получался в реакции 85,87Rb(p;4,6n) 82Sr. После радиационного остывания, облученное мишенное вещество загружали в контейнер из нержавеющей стали, или из тантала с отверстием в верхней крышке. Контейнер помещали в печь, которая нагревалась в вакуумном объеме испытательного стенда (рисунки 2,3).
Рисунок 2. Испытательный высоковакуумный стенд для разделения мишенного вещества и целевого радионуклида
Рисунок 3. Высокотемпературный Ta-W контейнер для нагрева мишенного материала
На рисунке 4 представлена схема прототипа высокоэффективного мишенного устройства, который включает в себя танталовую печь, помещенный в нее танталовый контейнер с облученным мишенным веществом , танталовые тоководы с водно-охлаждаемыми медными держателями и медный коллектор, на который высаживается выделяемый радионуклид. После размещения контейнера в печи вакуумный объем испытательного стенда герметично закрывался и откачивался до высокого вакуума. Затем температура плавно повышалась до 800 0С. При данной температуре не наблюдалось заметного испарения мишенного вещества, а также целевого радионуклида стронция из нагреваемого контейнера. Затем температуру поднимали до 900 - 1000 0С и в течение часа высаживали мишенное вещество RbCl в балластный объем. Так как летучесть атомов стронция (как показал эксперимент) значительно ниже, чем летучесть атомов мишенного вещества в указанном диапазоне температур, целевой радионуклид 82Sr при нагреве полностью оставался в контейнере. Оставшийся в мишенной капсуле стронций может быть испарен из мишенной капсулы при более высокой температуре на охлаждаемый коллектор, или смыт с ее внутренней поверхности небольшим количеством раствора соляной или азотной кислоты.
Рисунок 4. Прототип высокоэффективного мишенного устройства
Эффективность выделения мишенного вещества и целевого радионуклида определялась по изменению площадей соответствующих гамма-линий, измеренных до и после нагрева контейнера с облученным мишенным веществом. На рисунке 5 представлена часть гамма спектра облученного RbCl в контейнере до и после нагрева при температуре ниже 800 0С в течение одного часа. Как мы видим из характерных гамма линий рубидия и стронция, при данной температуре и мишенное вещество и целевой радионуклид полностью остаются в контейнере. На рисунке 6 представлена часть гамма спектра до и после нагрева до 900 0С, с нагреванием образца при данной температуре в течение одного часа. Исчезновение гамма линия рубидия-83 наглядно демонстрирует, что при данной температуре мишенное вещество RbCl полностью улетучилось, а неизменность площади гамма-линии 776 кэВ показывает полное сохранение целевого радионуклида Sr-82 внутри контейнера.
Рисунок 5. Часть гамма-спектра облученного RbCl до и после нагрева в высоком вакууме при температуре ниже 800°С.
Рисунок 6. Часть гамма-спектра облученного RbCl до и после нагрева в высоком вакууме при температуре 900°С и выше
Заключение
В рамках данного исследования было продемонстрировано, что разработанный инновационный метод высокотемпературного высоковакуумного разделения радионуклидов может быть использован для получения радиоизотопного генератора Sr-82/Rb-82. Также было показано, что данный метод позволяет проводить непосредственно в мишенном устройстве разделение мишенного вещества (RbCl) и целевых радионуклидов (изотопы стронция) с эффективностью лучше, чем 99,9%.
На основе проведенных исследований разработан прототип нового высокоэффективного мишенного устройства для изотопного комплекса РИЦ-80.