Статья:

Управление горизонтальным бурением скважин

Журнал: Научный журнал «Студенческий форум» выпуск №42(135)

Рубрика: Технические науки

Выходные данные
Мухамбет А. Управление горизонтальным бурением скважин // Студенческий форум: электрон. научн. журн. 2020. № 42(135). URL: https://nauchforum.ru/journal/stud/135/83161 (дата обращения: 23.07.2024).
Журнал опубликован
Мне нравится
на печатьскачать .pdfподелиться

Управление горизонтальным бурением скважин

Мухамбет Абылай
студент, Тюменский Индустриальный Университет, РФ, г. Тюмень
Паршукова Людмила Александровна
научный руководитель, доцент, Тюменский Индустриальный Университет, РФ, г. Тюмень

 

Управление оборудованием в процессе такого бурения является важной задачей, так как бур находится на значительном удалении от оператора.  Для этого используется специальный зонд, расположенный на буровой  головке. Синхронизация действий зонда обеспечивается специальными техническими устройствами, которыми с поверхности управляет  оператор.

Зонд в процессе работы оборудования отмечает несколько параметров (например, текущий угол наклонного бурения). Все получаемые данные передаются на пункт управления, и с учетом получаемой информации оператор вносит коррективы в процесс.

Он также следит за количеством оборотов бурового инструмента и за температурой буровой головки.

От оперативности поступления информации от зонда напрямую зависит успешное и своевременно предупреждение возникновения опасных ситуаций.

В состав комплексных установок горизонтально-направленного бурения входят:

  • лафет;
  • рама;
  • кузовная часть;
  • буровое устройство;
  • система транспортировки (колесная или гусеничная);
  • гидроустановка для подачи бурового раствора;
  • энергоподстанция;
  • пульт управления.
  • силовая установка (например, дизельный генератор или мотор);
  • система штангоподачи.

2. Задачи скважинных измерений телесистемами

Задачи скважинных измерений системами, использующими каналы связи забой - устье, можно разбить на три основные группы:

оперативный технологический контроль за режимом бурения скважин с целью его оптимизации;

2) контроль направления бурения скважин с целью управления процессом направленного бурения по заданной траектории;

3) литологическое расчленение геологического разреза скважины, исследование параметров пластов, не искаженных проникновением фильтрата промывочной жидкости в пласт, выделение пластов-коллекторов, прогнозирование зон аномальных пластовых давлений.

Имея с забоя данные о частоте вращения долота и истинной осевой нагрузке на долото, можно поддерживать режим таким образом, чтобы обеспечивалась максимальная механическая скорость проходки, следить за износом долота, не допуская критических режимов его работы.

В связи с все возрастающими объемами кустового, направленного и горизонтального бурения (в том числе для охраны окружающей среды), весьма актуальной становится проблема контроля за направлением ствола скважины в процессе ее бурения, проблема возможности управления этим процессом по намеченной программе. Комплекс измерительных датчиков контроля направления ствола скважины должен состоять из датчиков измерения угла наклона скважины, ее азимута. Для управления процессом направленного бурения измерительную систему оборудуют также датчиком положения отклонителя. Описанные две группы датчиков могут быть объединены в одной телеизмерительной системе для оптимизации процесса бурения скважин наклонно-направленного и горизонтального бурения.

В ряде случаев целесообразно в качестве дополнительной информации с забоя иметь данные о расходе промывочной жидкости с целью определения герметичности замковых соединений бурильного инструмента, изучения режима очистки забоя от шлама; целесообразно также измерять температуру на забое с целью изучения теплового режима бурения скважины.

Очень информативным параметром бурения является вибрация бурильного инструмента. Она характеризует как процесс разрушения горных пород, так и свойства разбуриваемых пластов (упругие характеристики, литологический состав и др.).

Измерение геофизических параметров в процессе бурения скважин позволяет получить сведения о литологическом составе и удельных электрических сопротивлениях пластов, не затронутых проникновением фильтрата промывочной жидкости в пласт, что дает возможность надежно выделять продуктивные горизонты, исключая их пропуск, а по изменению характеристик пластов — прогнозировать приближение зон аномально высокого или аномально низкого пластовых давлений, границ продуктивного пласта. Кроме того, наличие в измерительном комплексе геофизических зондов различной глубинности обеспечивает возможность измерений параметров пластов с целью изучения динамики образования зоны проникновения фильтрата промывочной жидкости в призабойной зоне.

Измерение естественной радиоактивности горных пород, окружающих скважину, как правило, дает возможность провести литологическое расчленение разреза и в комплексе с электрическими характеристиками пласта – выделять границы пласта, расчленять разрез на отдельные пропластки. Как правило, контроль режима бурения осуществляется станцией геолого-технологических исследований по показаниям наземных датчиков. К ним относятся: измерение механической скорости бурения, веса на крюке, расхода промывочной жидкости и давления на стояке, газовый и люминесцентный и др. каротаж.

Данные геофизических исследований, полученные в процессе бурения могут служить в большинстве скважин надежным критерием интерпретации результатов с целью дальнейшего планирования работ на скважине (опробования объектов, отбора керна и др.). В этих случаях комплекс ГИС, проводимый аппаратурой на кабеле, может быть сокращен, соответственно уменьшено время на задалживание скважин для проведения ГИС.

Объединение перечисленных комплексов в единую телеизмерительную систему требует передачи большого объема информации и может быть реализовано только с каналом, обладающим высокой пропускной способностью.

Характерной особенностью телеизмерительных систем в процессе бурения является то, что выход из строя любого блока скважинной аппаратуры приводит к потере информации до конца рейса и требует извлечения глубинного прибора на земную поверхность для восстановления его работоспособности.

Повышенные вибрации, воздействие агрессивной и абразивной среды, удары, механические нагрузки на сжатие и растяжение, кручение, повышенные давление и температура – требуют разработки специальных мер защиты, применения износостойких высокопрочных материалов, прочных покрытий.

Учет специфических требований к скважинным информационно-измерительным системам различного назначения позволяет обеспечить необходимую надежность систем, продлить срок их эксплуатации в скважинных условиях. Особое значение имеет надежная работа при значительных вибрациях и механических нагрузках.

Таким образом, комплекс скважинных измерений в процессе бурения: скорости вращения режущего инструмента — долота, осевой нагрузки и крутящего момента, вибрации долота, расхода и температуры промывочной жидкости, угловых параметров траектории определяет технологический режим бурения, его оптимальность.

Регистрация естественной радиоактивности горных пород, измерение акустических и электрических свойств окружающих скважину горных пород в процессе бурения обеспечивают литологическое расчленение геологического разреза, определение насыщенности пласта, выделение зон аномальных пластовых давлений, пеленгации границ продуктивного пласта на наклонных пологих и горизонтальных участках бурения нефтегазовых скважин.

 

Список литературы:
1. Молчанов А. А., Абрамов Г. С., Сараев А. А. Телеизмерительные системы с электромагнитным каналом связи для проводки и геофизических исследований наклонно-направленных и горизонтальных скважин Западной Сибири (опыт применения и перспективы). НТВ АИС «Каротажник», №59,1999.—С.85-91.
2. Молчанов А. А., Абрамов Г. С., Терехов Г. В. Электромагнитный канал связи «забой-устье», Наука в СПГГИ (ТУ), № 2, 1999, Санкт-Петербург