Особенности алевропесчаников суворовской свиты Енисейского кряжа
Секция: Науки о Земле
XLI Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: естественные и медицинские науки»
Особенности алевропесчаников суворовской свиты Енисейского кряжа
Изучаемые отложения суворовской свиты (V1sv) залегают в пределах Дюбкошского грабена, расположенного в северной части Енисейского кряжа (Красноярский край) и выполненного преимущественно вендскими отложениями [3]. С северо-восточной стороны грабен ограничен Дюбкошским разломом, с юго-западной – Татаро-аяхтинским гранитоидным комплексом. По литологическим особенностям в разрезе свиты выделяются четыре пачки пород: I пачка сложена красноцветными песчаниками, II пачка грубозернистых несортированных желтовато- и красновато-бурых полимиктовых песчаников, III пачка представлена переслаиванием песчаников мелкозернистых и алевролитов мелкозернистых и крупнозернистых в различных пропорциях и сочетаниях и IV пачка представлена переслаиванием алевролитов от глинистых до крупнозернистых, с небольшими (первые метры) прослоями и линзами мергелистых доломитов и доломитизированных известняков. В ходе поисковых работ, проводимых ООО «Соврудник» в 2012 г, буровыми скважинами был вскрыт почти полный разрез суворовской свиты (около 750 м). С целью детального изучения литологии алевролитов и песчаников, а также особенностей распределения глауконита, автором была изучена коллекция образцов керна одной из скважин, вскрывающей образования третьей и четвертой пачки. Изучение осуществлялось с использованием микроскопа “Axioscop 40 A Pol” (ФРГ), минеральный состав пород, изученных по 11 шлифам, представлен в таблице. Нумерация шлифов соответствует глубине отбора соответствующего фрагмента керна в метрах.
Таблица 1.
Минеральный состав пород в шлифах
№ шлифа |
кварц |
полевые шпаты |
обломки кремнистых пород |
рутил в кварце |
глауконит |
кальцит |
доломит, сидерит |
хло рит |
магнетит, пирит |
85,6 |
+ |
+ |
+ |
|
|
+ |
|
|
+ |
95,0 |
+ |
+ |
+ |
|
|
+ |
|
|
+ |
102,8 |
+ |
+ |
+ |
|
|
+ |
+ |
|
+ |
105,9 |
+ |
+ |
|
+ |
|
+ |
|
|
+ |
119,5 |
+ |
+ |
|
+ |
|
+ |
|
|
+ |
143,0 |
+ |
+ |
|
+ |
+ |
+ |
+ |
|
+ |
177,7 |
+ |
+ |
|
|
|
+ |
+ |
|
+ |
184,7 |
+ |
+ |
|
|
+ |
+ |
+ |
|
+ |
186,8 |
+ |
+ |
+ |
|
+ |
+ |
+ |
+ |
+ |
187,7 |
+ |
+ |
|
|
+ |
+ |
+ |
|
+ |
196,5 |
+ |
+ |
+ |
|
+ |
+ |
+ |
+ |
+ |
Микротекстура пород беспорядочная, микрослоистая. Микроструктура мелко-среднезернистая. Обломочная часть горных пород сложена преимущественно кварцем (70–75%) и полевыми шпатами (20–25%), при этом количество зёрен калиевых полевых шпатов существенно преобладает над количеством зерен плагиоклаза; Плагиоклаз в шлифах в основном кислого и среднего состава. В единичных зернах встречаются обломки кремнистых пород (не более 5%). Кварц хорошо окатанный, либо полуокатанный, бесцветный или мутный за счет многочисленных пылеватых непрозрачных включений, также в составе кварца встречаются газово-жидкие включения, развитые вдоль залеченных трещин (рис. 1). Большинство зерен регенерированы, изъедены за счет структур вдавливания с другими зернами. В некоторых шлифах в кварце отмечены вростки иголочек рутила. Калиевые полевые шпаты также окатаны, хотя окатанность меньше, чем у кварца. Встречается микроклин с характерной микроклиновой решеткой и ортоклаз. В зернах ортоклаза развита пелитизация, за счет которой цвет их часто мутный, буроватый. Размер зерен от 0,2 до 0,5 мм. Обломки пород округлые, буровато-серые, серо-желтые за счет пылеватых включений, размер обломков в шлифах варьирует от 0,3 до 0,6 мм.
Рисунок 1. Шлиф-1868 Газово-жидкие включения в кварце (диаметр поля зрения 0,25 мм)
Во всех шлифах развит регенерационный цемент кварца, характер вторичных изменений либо полностью регенерационный, либо частично. Часто встречается конформное вдавливание зерен, цемент пор и в меньшем количестве базальный цемент. Цемент в небольшом количестве сложен карбонатами (кальцит, доломит, сидерит), также кремнистыми минералами (халцедоном и кварцином), и хлоритом в виде пленок. Карбонаты, помимо цемента, выступают в шлифе как вторичные минералы. Они имеют угловатую форму, а также встречаются в виде прожилков, доломит отличается четкой ромбовидной формой кристаллов, сидерит - содержанием гидроокислов железа, также карбонаты могут замещать глауконит и даже кварц. Акцессорные минералы: пирит, идентифицированный на бинокулярном микроскопе и предположительно магнетит, встречаются в виде изометричных зерен. Пирит образует фрамбоидальные выделения, замещающие глауконит.
Глауконит появляется на глубине 143 м от поверхности. Структура глауконитовых зерен [4] в целом микролепидобластовая, микротекстура беспорядочная. В шлифах встречается в небольших количествах, не более 5-10% от площади, распределение обычно равномерное. Первое появление глауконита отмечено на глубине 143 м (единственное зерно глауконита, практически полностью замещенное предположительно магнетитом). Далее с увеличением глубины количество зёрен глауконита возрастает, а степень их замещения пиритом, магнетитом и халцедоном - уменьшается. На глубине 187,7 и 196,5 м глобулы глауконита более раздроблены, прослеживаются трещины. Характеризуется глобулярной, овальной, бобовидной формой, реже встречаются прожилковидные, сетчатые скопления [5]. Размер скоплений от 0,1 до 0,5 мм, постепенно возрастает с глубиной. Цвет ярко-зеленый, насыщенный. Принято считать, что глауконит, будучи аутигенным минералом, образуются обычно в песчаных толщах мелководных морских бассейнов [2], но, судя по наличию не только глобулярных, но и прожилковых форм, образование глауконита происходило, очевидно, и в ходе диагенеза уже литифицированных песчаников.
Интересной особенностью изученных шлифов является наличие округлых структур, сложенных халцедоном и рудными минералами (пиритом и магнетитом), по размеру и форме соответствующих глауконитовым стяжениям. Количество этих образований в целом возрастает по мере уменьшения доли глауконита в породе.
На основе анализа выполненных наблюдений можно сделать вывод о двухэтапном формировании глауконита в песчаниках и алевролитах в ходе погружения формирующейся толщи терригенных пород. Помимо этого, породы подверглись карбонатизации (рис. 2 б), окварцеванию и сульфидизации. Позднее, при воздымании территории отложения суворовской свиты испытали интенсивное выветривание. Из-за слабой устойчивости глауконита к выветриванию начался процесс его разложения с образованием оксидов и гидрооксидов Fe и SiO2 [1]. В связи с этим, в верхней части разреза мы наблюдаем реликты глобул глауконита, замещенные халцедоном и магнетитом (рис. 2 а), но далее по разрезу, за счет удаленности от поверхности появилась возможность наблюдать незамещённые зерна глауконита (рис. 2 в). Наличие характерных псевдоморфоз в песчаниках и алевролитах, таким образом, может свидетельствовать о изначальном присутствии глауконитовых стяжений, уничтоженных процессами выветривания.
Рисунок 2. а) Шлиф 1028 – глобула глауконита, замещенная халцедоном и магнетитом; б) Шлиф 1868 – карбонат частично замещает зерно глауконита; в) Шлиф 1877 – глобула глауконита замещенная магнетитом и слабозамещенная карбонатами; диаметр полей зрения 1,5 мм