Тестирование технологических жидкостей на процесс восстановления коллекторских свойств после применения фильтрата бурового раствора
Секция: Технические науки
X Студенческая международная научно-практическая конференция «Технические и математические науки. Студенческий научный форум»
Тестирование технологических жидкостей на процесс восстановления коллекторских свойств после применения фильтрата бурового раствора
Аннотация: С целью снижения негативного воздействия буровых растворов на пласт возникает необходимость разработать технологии, позволяющие восстановлению коллекторских свойств пород. Одним из направлений является разработка технологических жидкостей, позволяющих решить данную задачу
В данной работе протестированы несколько технологических жидкостей на предмет восстанавливающей способности коллекторских свойств пород после воздействия на них фильтрата бурового раствора.
Ключевые слова: горная порода, фазовая проницаемость, вязкость, коллектоские свойства, коэффициент восстановления, технологические жидкости.
Методика проведения исследования:
Этапы проведения эксперимента (эксперимент проводится в термобарических условиях):
1.2.1. Первый этап эксперимента заключался в определении фазовой проницаемости пород по конденсату при неснижаемой водонасыщенности в ТБУ условиях.
1.2.2. Второй этап эксперимента заключался в фильтрации раствора Megadrill через модель в количестве 4-6 поровых объемов (в ТБУ условиях) в обратном направлении. После этого снова определялась фазовая проницаемость по конденсату.
1.2.3. Третий этап эксперимента заключался в фильтрации ТЖС (плотность 1,16 г/см3) через модель в количестве 4-6 поровых объемов (в ТБУ условиях) в обратном направлении. После этого снова определялась фазовая проницаемость по конденсату.
1.2.4 Четвертый этап эксперимента заключался в фильтрации раствора 5% соляной кислоты через модель в количестве 4-6 поровых объемов (в ТБУ условиях) в обратном направлении. После этого снова определялась фазовая проницаемость по конденсату.
1.2.5 Пятый этап эксперимента заключался в фильтрации технологической жидкости PetroBOOST через модель в количестве 4-6 поровых объемов (в ТБУ условиях). После этого снова определялась фазовая проницаемость по конденсату.
Выполнялся анализ и обобщение полученной в результате эксперимента информации.
В ходе тестирования измеряется перепад давления (dP) на керне и объемная скорость фильтрации жидкости (Q). Определяется значение отношения Q/dP, которое используется в расчете проницаемости.
Проницаемость определяется по формуле
где K –проницаемость модели фильтра призабойной зоны, 10-3 мкм2;
Q/dP – отношение объемной скорости фильтрации флюида к перепаду давления на концах модели фильтра призабойной зоны, (см3/ч)/МПа;
– вязкость флюида
-отношение длины модели фильтра призабойной зоны к площади ее сечения, см-1;
1/36 –пересчетный коэффициент, зависящий от системы единиц измерения в опытах.
По результатам исследований была построена диаграмма:
Рисунок 1. Гистограмма изменения проницаемости образцов на различных этапах эксперимента
Из рисунка видно, что проницаемость уменьшается после прокачки каждой последующей жидкости и увеличивается на последнем этапе после закачки технологической жидкости PetroBOOST.
Выводы:
· Фазовая проницаемость горной породы по конденсату после прокачки технологических жидкостей (Megadrill, жидкость глушения, 5% соляная кислота) существенно уменьшается за счет кольматации порового пространства, проникновения фильтрата бурового раствора в керн, а также ввиду создания рыхлосвязанной водонасыщенности в поровом пространстве образца.
· После воздействия на керн технологической жидкостью PetroBOOST произошло существенное увеличение фазовой проницаемости по конденсату, обусловленное уменьшением размера зерен (подтверждается гранулометрическим составом и шлифам) и, соответственно увеличением порового пространства.
· В результате, после ухудшения коллекторских свойств, вызванного прокачкой технологических жидкостей через керн, влздействие составом PetroBOOST приводит к существенному восстановлению проницаемости керна (коэффициент восстановления проницаемости варьируется в пределах 47-84%, увеличиваясь с ростом ФЕС образцов).